Home About us Contact | |||
Weight Percentage (weight + percentage)
Kinds of Weight Percentage Selected AbstractsThermally stimulated depolarization study in polyvinylidenefluoride,polysulfone polyblend filmsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010Pooja Saxena Abstract Thermally stimulated depolarization currents (TSDCs) in short- and open-circuit modes in polyvinylidenefluoride (PVDF),polysulfone (PSF) polyblend have been recorded. The TSDC thermograms of PVDF and PSF in short-circuit mode show two peaks, whereas the polyblend of the two polymers shows a single peak. With the increase in PSF weight percentage in the polyblend, the magnitude of TSDC peak current increased and the peak current position shifted toward the lower temperature side. The single peak in polyblend appears at 165°C ± 10°C, which is at higher temperature than the temperature of low-temperature peak for individual polymers. This suggests that this peak may be due to dipolar polarization. Subsequently, shifting of peak toward higher temperature side with increase in polarizing temperature indicates the space charge peak. This contradiction has been explained on the basis of induced dipole theory. The behavior of short circuit TSDC could be explained in terms of the heterocharge caused by dipole orientation and ionic homocharge drift, together with the injection of charge carriers from electrodes and their subsequent localization in surface and bulk traps. However, two oppositely directed TSDC peaks observed in open-circuit mode in all the polyblend samples could be considered as the result of superposition of two overlapped and oppositely directed peaks, one caused by relaxation of dipole polarization and the other by the space charge. Thus, we have compared TSDC measured in open- and short-circuit modes to distinguish between these two relaxation processes and separate them. There is only one broad peak observed in the short-circuit mode of the polyblend, which entirely corresponds to the relaxation of dipole polarization. Insertion of a dielectric gap in the open-circuit mode does not affect the dipole current, but the space charge component flowing in the opposite direction is added to the former. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Synthesis and characterizations of nanosized iron(II) hydroxide and iron(II) hydroxide/poly(vinyl alcohol) nanocompositeJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010M. Fathima Parveen Abstract Nanosized Fe(OH)2 was synthesized by a coprecipitation method. Peaks between 500 and 1250 cm,1 in Fourier transform infrared (FTIR) spectroscopy confirmed the presence of metal hydroxide stretching. X-ray diffraction showed the suppressed crystalline system of Fe(OH)2/aniline (ANI) due to the presence of a higher weight percentage of the dispersing agent, ANI. Thermogravimetric analysis implied that 75.5 wt % of residue remained up to 800°C. High resolution transmission electron microscope (HRTEM) analysis of Fe(OH)2/ANI revealed that its size ranged from 10 to 50 nm with a rodlike morphology. Scanning electron microscopy implied that pristine Fe(OH)2 had a nanotriangular platelet morphology, and a higher weight percentage of dispersing agent intercalated with Fe(OH)2 had a spheroid with an agglomerated structure. The (UV,visible) spectrum implied the presence of Fe2+ ions at 326 nm and the existence of an amino group intercalated with Fe(OH)2 showed a sharp peak at 195 nm, the intensity of which increased with increasing intercalated dispersing agent weight percentage. Photoluminescence showed that ANI-intercalated Fe(OH)2 showed a lesser intensity than the pristine Fe(OH)2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Synthesis of processible doped polyaniline-polyacrylic acid compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009Bhavana Gupta Abstract Processible composites of emeraldine salt form of polyaniline (PANI) with polyacrylic acid (PAA) are synthesized and studied for their structural, electrical, mechanical, thermal, and electrochemical properties. The processible conducting composites of various weight percentage from 20 wt % to 90 wt % (of PANI) have been prepared by mixing the PANI and PAA under vigorous stirring and sonication conditions. Self-standing films of electroactive homogeneous composites are obtained by solution casting method. A significant improvement in processibility, crystallinity, and thermal stability is observed in the composites; however, the electrical conductivity decreased remarkably as the percentage of PANI is decreased in the composites. The 60 wt % PANI-PAA composite showed crystalline structural property with orthorhombic crystal system and cell parameters as a = 5.93Å, b = 7.57Å, and c = 10.11Å. The 60 wt % PANI-PAA composite also showed better thermal stability and highest capacitance amongst all the composites and used as an active material for development of electrochemical capacitors (parallel plate assembly). The processible composites based electrochemical capacitors using 0.5 M NaClO4 -Acetonitril electrolyte showed super capacitance with ease in fabrication and cost effectiveness in comparison to other similar materials based capacitors. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] QUANTIFYING ADULTERATION IN ROAST COFFEE POWDERS BY DIGITAL IMAGE PROCESSINGJOURNAL OF FOOD QUALITY, Issue 2 2003EDSON E. SANO Pure arabica coffee and mixtures of coffee husks and straw, maize, brown sugar and soybean were produced in our laboratory as investigation materials. Red/Green/Blue (RGB) color composites, magnified twelve times, were generated using a Charge Coupled Device (CCD) camera connected to a stereo microscope and a personal computer with an image processing software package. The percent areas of the contaminants in each image were calculated by the Maximum Likelihood supervised classification technique. Best-fit equations relating weight percentage (g.kg -1) and the percent areas were obtained for each coffee contaminant. To test the method, 247 coffee samples of different amounts and types of adulterants were analyzed in the laboratory. The results showed that the new method developed can analyze precisely and quickly a large number of ground coffee powders. [source] The role of oral sensorimotor function in masticatory abilityJOURNAL OF ORAL REHABILITATION, Issue 3 2004K. Hirano summary, In order to investigate the relationship between oral sensorimotor ability and masticatory function, an oral stereognosis ability (OSA) test, masticatory performance and efficiency was employed for 15 dentate subjects. Subjects were instructed to orally identify OSA test pieces blindly. The response score and sum of the duration time for identification were used for analysis as OSA score and OSA response time. Masticatory function was evaluated using a sieving method with 3 g of peanuts. Masticatory performance was calculated with the weight percentage of portions finer than 1700 ,m by the total volume after 20 chewing strokes. Masticatory efficiency was calculated by the declination rate of median particle size which is defined by the Rosin,Rammler equation. To analyse the relationship between OSA variables and masticatory ability, the correlation coefficient was calculated. The results summarized as a significant correlation was found only between OSA score and masticatory efficiency. However, a significant correlation could not be found between other OAS variables and masticatory ability. It was revealed that positive correlation existed between oral stereognosis ability and masticatory ability. It was suggested that the role of oral sensorimotor function might affect the masticatory function. [source] Effect of Aluminum Oxide Addition on the Flexural Strength and Thermal Diffusivity of Heat-Polymerized Acrylic ResinJOURNAL OF PROSTHODONTICS, Issue 6 2008Ayman E. Ellakwa BDS Abstract Purpose: This work was undertaken to investigate the effect of adding from 5% to 20% by weight aluminum oxide powder on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. Materials and Methods: Seventy-five specimens of heat-polymerized acrylic resin were fabricated. The specimens were divided into five groups (n = 15) coded A to E. Group A was the control group (i.e., unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with aluminum oxide (Al2O3) powder to achieve loadings of 5%, 10%, 15%, and 20% by weight. Specimens were stored in distilled water at 37°C for 1 week before flexural strength testing to failure (5 mm/min crosshead speed) in a universal testing machine. Results were analyzed by one-way analysis of variance and post hoc Tukey paired group comparison tests (p < 0.05). Weibull analysis was used to calculate the Weibull modulus, characteristic strength, and the required stress for 1% and 5% probabilities of failure. Cylindrical test specimens (5 specimens/group) containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). Results: The mean flexural strength values of the heat-polymerized acrylic resin were (in MPa) 99.45, 119.92, 121.19, 130.08, and 127.60 for groups A, B, C, D, and E, respectively. The flexural strength increased significantly after incorporation of 10% Al2O3. The mean thermal diffusivity values of the heat-polymerized acrylic resin (in m2/sec) were 6.8, 7.2, 8.0, 8.5, and 9.3 for groups A, B, C, D, and E, respectively. Thermal diffusivities of the composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler, which suggested that the proper distribution of alumina powders through the insulating polymer matrix might form a pathway for heat conduction. Conclusion: Al2O3 fillers have potential as added components in denture bases to provide increased flexural strength and thermal diffusivity. Increasing the flexural strength and heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. [source] Microwave Dielectric Properties of SrRE4Si3O13 (RE=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, and Y) CeramicsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2009Sherin Thomas The apatite type SrRE4Si3O13 (RE=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, and Y) ceramics have been prepared by the conventional solid-state ceramic route. The phase purity and surface morphology of the sintered ceramics were studied using X-ray diffraction and scanning electron microscopy methods. These materials showed poor sinterability and was improved by the addition of a small weight percentage of zinc borosilicate glass. The microwave dielectric properties of these materials were studied for the first time. SrRE4Si3O13 ceramics have a low relative permittivity (,r) in the range 9,16, a Q-factor (Qu×f) upto 26 000 GHz and a low temperature coefficient of resonant frequency (,f). The SrLa4Si3O13 ceramics possessed a high Qu×f of nearly 26 000 GHz but with a high negative ,f of ,46 ppm/°C. The ,f of SrLa4Si3O13 ceramics was tuned by the addition of suitable amount of TiO2. [source] A New Apparatus for Particle Impact TestsPARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 4 2003Yevgeny Petukhov Abstract Breakage and chipping of particles due to collision with a hard surface is a common occurrence in many conveying and handling systems, such as pneumatic conveying and jet-mills. Studies of the breakage mechanism of particles due to impact and the effect of impact velocity and the number of impacts have been investigated in depth both experimentally and theoretically. In this paper, a new concept and apparatus are introduced for conducting particle impact tests. In most of the published test rigs, particles were accelerated towards a target. In our apparatus, the target moves and hits the particles. Using this concept, the machine can operate in a vacuum, which will reduce errors caused by air streams and turbulence. The performance of the new apparatus is analyzed and the breakage phenomenon is discussed, to some extent, for two materials. The results are presented in terms of the increase in the weight percentage of the feed broken and the decrease in the weight median size as the impact velocity or number of impacts increases. [source] Effects of conductive fibers and processing conditions on the electromagnetic shielding effectiveness of injection molded compositesPOLYMER COMPOSITES, Issue 6 2002S. Y. Yang This paper investigates the electromagnetic interference shielding effectiveness (EMI SE) of injection molded ABS disks filled with stainless steel fibers (SSF) and nickel-coated graphite fibers (NGF). The effects of fiber type, fiber length and weight percentage on SE were studied. Optical microscope (OM) and scanning electron microscopy (SEM) observations of the fiber distribution and dispersion were used to aid interpretation of the deviation on SE. The effects of processing conditions such as ring gate angles and injection speed on SE and fiber dispersions were also investigated. It is found that the SE of SSF filled disks is better than that of NGF with the same fiber length and weight percentage. The SEM shows that the SSF with severe twists connect with each other to form a three-dimensional network. Nevertheless, the NGF break into straight fragments, which make it difficult to form networks. With the same type of fiber (SSF), the critical concentration of 6mm was similar to that of 4mm. But the SE of 6mm is a little higher than that of 4mm. Minor improvements of SE values were obtained with expanded ring gate angles. Gate design and injection speed both change filling patterns. [source] Synthesis and properties of room temperature curable trimethoxysilane-terminated polyurethane and their dispersionsPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 8 2007Sankaraiah Subramani Abstract The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non-yellowing) silylated polyurethane (SPU) films. The films were characterized by FT-IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA-PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3-(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly-(oxytetramethylene)glycol (PTMG)-2000 and isophorone diisocyanate (or) toluene-2,4-diisocyanate have excellent properties compared to SPUs prepared using PTMG-1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end-group modification to produce SPUs with a wide range of physical properties. Copyright © 2007 John Wiley & Sons, Ltd. [source] Protein to carbohydrate ratio in high-energy diets for Atlantic salmon (Salmo salar L.)AQUACULTURE RESEARCH, Issue 7 2001Marie Hillestad Abstract The effect of dietary protein to carbohydrate ratios (P/CH, weight percentage) of P34/CH21, P39/CH15 and P44/CH10 was studied in Atlantic salmon (Salmo salar L.) with respect to growth and feed conversion ratio (FCR) in one medium-scale experiment (Experiment 1) and to slaughter quality in two production scale experiments (Experiments 2A and 2B). The dietary fat was maintained at 290 g kg,1 whereas the protein (fish meal) was exchanged with carbohydrate (wheat). Fish grown from approximately 1 to 4 kg were fed a restricted diet (iso-energetic on gross energy basis) or to satiation. Nitrogen, fat, starch and energy digestibilities were measured in a separate experiment. There were slight tendencies for lower growth (P = 0.06) and for higher FCRs (P = 0.06) in Experiment 1, and a slight tendency for a lower dress-out percentage in Experiments 2A and 2B (P = 0.10 and 0.20 respectively) with decreasing P/CH. The P/CH had no effect on the fat concentration of fillets, flesh colour or sexual maturation. The digestibility of starch decreased from 62.1% to 46.1% and the digestibility of energy from 84.9% to 79.5% when P/CH decreased from P44/CH10 to P34/CH21. Growth per unit digestible protein increased with decreasing P/CH. Feeding to satiation improved the growth but the FCR was higher than it was for restricted feeding. The calculated starch load per kg of fish growth increased with decreasing P/CH, whereas the effluent nitrogen decreased. [source] Preparation and characterization of polymer/multiwall carbon nanotube/nanoparticle nanocomposites and preparation of their metal complexesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2010Ahmad Nozad Golikand Abstract Carbon nanotube-polymer nanocomposites were synthesized and characterized successfully. In this work, multiwall carbon nanotubes (MWCNT) were opened using HNO3/H2SO4 mixture and filled by metal nanoparticles such as silver nanoparticles through wet-chemistry method. The oxidized MWCNT were reacted subsequently with thionyl chloride, 1,6-diaminohexane, producing MWNT-amine functionalized. Then the MWCNT containing metal nanoparticles were used as a monomer with different weight percentages in melt polymerization with An and CNCl separately. Furthermore, the polyamide and polytriazine modified MWCNT were used for the preparation of metal ion complexes such as Fe+2 and La+3. The structures and properties of nanocomposites were evaluated by TEM, DSC, TGA, and FT-IR methods. The chelating behavior and sorption capacities of prepared nanocomposites were carried out by using some metal ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Synthesis and properties of carboxymethyl cellulose- graft -poly(acrylic acid- co -acrylamide) as a novel cellulose-based superabsorbentJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007Aili Suo Abstract A new cellulose-based superabsorbent polymer, carboxymethyl cellulose- graft -poly(acrylic acid- co -acrylamide), was prepared by the free-radical grafting solution polymerization of acrylic acid (AA) and acrylamide (AM) monomers onto carboxymethyl cellulose (CMC) in the presence of N,N,-methylenebisacrylamide as a crosslinker with a redox couple of potassium persulfate and sodium metabisulfite as an initiator. The influences of reaction variables such as the initiator content, crosslinker content, bath temperature, molar ratio of AA to AM, and weight ratio of the monomers to CMC on the water absorbency of the carboxymethylcellulose- graft -poly(acrylic acid- co -acrylamide) copolymer were investigated. The copolymer's structures were characterized with Fourier transform infrared spectroscopy. The optimum reaction conditions were obtained as follows: the bath temperature was 50°C; the molar ratio of AA to AM was 3 : 1; the mass ratio of the monomers to CMC was 4 : 1; and the weight percentages of the crosslinker and initiator with respect to the monomers were 0.75 and 1%, respectively. The maximum water absorbency of the optimized product was 920 g/g for distilled water and 85 g/g for a 0.9 wt % aqueous NaCl solution. In addition, the superabsorbent possessed good water retention and salt resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1382,1388, 2007 [source] The discovery of polymer-clay hybridsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2004Masaya Kawasumi Abstract The first successful example of a polymer-clay hybrid was nylon-clay hybrid (NCH), which is a nano-meter-sized composite of nylon-6 and 1-nm-thick exfoliated aluminosilicate layers of the clay mineral. NCH was found and developed at Toyota Central Research and Development Laboratories over 17 years ago. The NCH containing a few weight percentages of clay exhibits superior properties such as high modulus, high strength, and good gas-barrier properties. The key for the discovery of NCH was the polymerization of a nylon monomer in the interlayer space of the clay. This highlight presents the development of NCH from its discovery to its commercialization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 819,824, 2004 [source] Preparation and characterization of PBT nanocomposites compounded with different montmorillonitesPOLYMER ENGINEERING & SCIENCE, Issue 6 2004Domenico Acierno Because of their superior mechanical and thermal properties, light weight, and favorable cost/performance ratio, nanocomposite materials appear to be suitable replacements for metals and alloys in many industrial applications in fields such as automotive, structural plastics, electronics, packaging, and so on (1). The technological relevance of this large-scale market for polymers is evidenced by the numerous patents issued over the last few years, even though only few applications have entered the market. Polymer-clay nanocomposite systems were successfully prepared by melt compounding using several thermoplastic matrices (polyamides, polyolefins, etc.), but few data are reported in the scientific literature on polyester-based nanocomposites (2). Because of the high commercial relevance of polyesters, we have investigated the effect of organoclay inclusion on the structure and properties of these hybrid systems. In particular, we have studied the relationships between processing conditions, hybrid composition (organoclay type and content), nanoscale morphology and properties of poly(butylene terephthalate) (PBT) nanocomposites based upon several commercial organo-modified montmorillonites at different weight percentages. The melt compounding was performed using a twin-screw extruder, at extrusion rates of 90 or 150 rpm. Polym. Eng. Sci. 44:1012,1018, 2004. © 2004 Society of Plastics Engineers. [source] Synthesis and properties of BCDA-based polyimide,clay nanocompositesPOLYMER INTERNATIONAL, Issue 6 2007P Santhana Gopala Krishnan Abstract Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA)-based polyimide,clay nanocomposites were prepared from their precursor, namely polyamic acid, by a solution-casting method. The organoclay was prepared by treating sodium montmorillonite (Kunipia F) clay with dodecyltrimethylammonium bromide at 80 °C. Polyamic acid solutions containing various weight percentages of organoclay were prepared from 4,4,-(4,4,-isopropylidenediphenyl-1,1,-diyldioxy)-dianiline and BCDA in N -methyl-2-pyrrolidone containing dispersed particles of organoclay at 20 °C. These solutions were cast on a glass plate using a Doctor's blade and then heated subsequently to obtain nanocomposite films. The nanocomposites were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal mechanical analysis, dynamic mechanical analysis, polarizing microscopy, scanning electron microscopy, transmission electron microscopy, wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis. The glass transition temperature of the nanocomposites was found to be higher than that of pristine polymer. The coefficient of thermal expansion of the nanocomposites decreased with increasing organoclay content. WAXD studies indicated that the extent of silicate layer separation in the nanocomposite films depended upon the organoclay content. Tensile strength and modulus of the nanocomposite containing 1% organoclay were significantly higher when compared to pristine polymer and other nanocomposites. The thermal stability of the nanocomposites was found to be higher than that of pristine polymer in air and nitrogen atmosphere. Copyright © 2007 Society of Chemical Industry [source] Temperature and pH sensitive ionic hydrogels based on new crosslinkersPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2005Ayman M. Atta Abstract New crosslinkers were synthesized from reaction of melamine with acryloyl and methacryloyl chloride in the presence of 1-methyl-2-pyrrolidone as a solvent and triethyl amine as acid acceptor. The chemical structures of the prepared crosslinkers were elucidated from FT-IR, 1H-NMR and 13C-NMR analyses. Linear 2-acrylamido-2-methyl-1-propane sulfonic acid and methacrylic acid (AMPS/MAA) copolymers were prepared and their viscometric properties in aqueous solution were investigated. Different weight percentages of the prepared crosslinkers were used as crosslinking agent (AMPS/MAA) to prepare ionic copolymers using ammonium persulfate as initiator. The percentage of crosslinkers was varied from 0.5 to 4,wt%. The swelling behaviors of crosslinked AMPS/MAA gels in deionized water were measured at different pH and temperatures. All AMPS/MAA copolymers exhibit faster deswelling rate at 50°C except for the copolymer containing 0.9 (mol ratio) AMPS. Copyright © 2005 John Wiley & Sons, Ltd. [source] Thermal Decomposition of Energetic Materials 85: Cryogels of Nanoscale Hydrazinium Diperchlorate in Resorcinol-FormaldehydePROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 2 2003Bryce Abstract The objective of this work was to try to desensitize an energetic material by using sol-gel processing and freeze drying to incorporate the energetic material into the fuel matrix on the nano (or at least submicron) particle size scale. Hydrazinium diperchlorate ([N2H6][ClO4]2 or HP2) and resorcinol-formaldehyde (RF) were chosen as the oxidizer and fuel, respectively. Solid loading up to 88% HP2 was achieved by using the sol gel-to-cryogel method. Various weight percentages of HP2 in RF were characterized by elemental analysis, scanning electron (SEM) and optical microscopy, T-jump/FTIR spectroscopy, DSC, and drop-weight impact. SEM indicated that 20,50,nm diameter HP2 plates aggregated into porous 400,800,nm size clusters. Below 80% HP2 the cryogels are less sensitive to impact than physical mixtures having the same ratios of HP2 and RF. The decomposition temperatures of the cryogels are higher than that of pure HP2, which is consistent with their lower impact sensitivity. The heat of decomposition as measured at a low heating rate increases with increasing percentage of HP2. The cryogels and physical mixtures release similar amounts of energy, but the cryogels exhibit mainly a single exotherm by DSC whereas the physical mixtures showed a two-step energy release. Flash pyrolysis revealed gaseous product ratios suggestive of more energy being released from the cryogels than the physical mixtures. Cryogels also burn faster by visual observation. [source] Effect of genipin-crosslinked chitin-chitosan scaffolds with hydroxyapatite modifications on the cultivation of bovine knee chondrocytesBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2006Yung-Chih Kuo Abstract Chitin and chitosan were hybridized in various weight percentages by genipin crosslinkage under various prefreezing temperatures to form tissue-engineering scaffolds via lyophilization. In addition, deposition of hydroxyapatite (HA) on the surface of the porous scaffolds was performed by precipitation method to achieve modified chemical compositions for chondrocyte attachments and growths. The experimental results revealed that a lower prefreezing temperature or a higher weight percentage of chitin in the chitin-chitosan scaffolds would yield a smaller pore diameter, a greater porosity, a larger specific surface area, a higher Young's modulus, and a lower extensibility. Moreover, a higher chitin percentage could also result in a higher content of amine groups after crosslink and a lower onset temperature for the phase transition after thermal treatment. A decrease in the prefreezing temperature from ,4°C to ,80°C, an increase in the chitin percentage from 20% to 50%, and an increase in the cycle number of alternate immersion for HA deposition from 1 to 5 generated positive effects on the cell number, the content of glycosaminoglycans, and the collagen level over 28-day cultivation of bovine knee chondrocytes. © 2006 Wiley Periodicals, Inc. [source] |