Home About us Contact | |||
Water-soluble Polysaccharide (water-soluble + polysaccharide)
Selected AbstractsGLYCOSIDASE INHIBITORY ACTIVITY AND ANTIOXIDANT PROPERTIES OF A POLYSACCHARIDE FROM THE MUSHROOM INONOTUS OBLIQUUSJOURNAL OF FOOD BIOCHEMISTRY, Issue 2010HAIXIA CHEN ABSTRACT A water-soluble polysaccharide from Inonotus obliquus (IOPS) was isolated from the mushroom Inonotus obliquus (Fr.) Pilat. The chemical compositions, molecular weight and inhibitory activities on glycosidase and antioxidant properties of IOPS were investigated. The results indicated that IOPS was an acid protein-bound polysaccharide, with a molecular weight of 1.7 × 104 Da and the contents of neutral sugar, protein and uronic acids being 42.5, 18.5 and 6.1%, respectively. IOPS exhibited an inhibitory activity against ,-glucosidase with the IC50 value of 93.3 µg/mL, whereas it had no effective inhibition on ,-amylase. Results of antioxidant activity assays revealed that IOPS had inhibitory activity on the concentration-dependent quenching of 1,1-Diphenyl-2-picrylhydrazyl and hydroxyl radicals. Furthermore, IOPS inhibited the formation of thiobarbituric acid-reactive substances in Fe2+/ascorbate-induced lipid peroxidation in rat liver tissue. These results clearly demonstrated that IOPS was one of the main bioactive components of I. obliquus that contributed to hypoglycemic activity and antioxidant activity. PRACTICAL APPLICATIONS Diabetes mellitus is one of the primary threats to human health because of its increasing prevalence, chronic course and disabling complications. Postprandial hyperglycemia plays an important role in the development of type 2 diabetes mellitus and complications associated with the disease. One therapeutic approach to decrease postprandial hyperglycemia is to retard the absorption of glucose through inhibition of carbohydrate-hydrolyzing enzymes in the digestive organs. In this study, a polysaccharide isolated from the mushroom Inonotus obliquus (IOPS) was shown to have notable glycosidase inhibitory effects and antioxidant activities. This research will benefit for the investigation of effective and safe ,-glucosidase inhibitors from natural materials. IOPS could be a good candidate for application in food and medicinal fields. It might be developed for functional food or lead compounds for use in antidiabetes. [source] Effects of Whey Permeate-Based Medium on the Proximate Composition of Lentinus edodes in the Submerged CultureJOURNAL OF FOOD SCIENCE, Issue 6 2006Xiaojun Jeffrey Wu ABSTRACT:, Biomass production, crude water-soluble polysaccharide (WSP), ash content, mineral profile, and crude protein content were determined for Lentinus edodes mycelia grown on whey permeate (WP)-based medium with lactose content of 4.5% or defined synthetic medium, and harvested after 5, 10, 15, or 20 d of fermentation at 25 °C. Harvesting time and the type of media interact to alter the chemical content of mycelia. Mycelia grown in WP had greater (P < 0.05) WSP and ash than mycelia grown in the synthetic media. A maximum production of WSP was obtained on the 10th day (4.1 × 102± 71 mg WSP/g dried mycelia) from mycelia grown on the WP-based media. Mycelia grown on WP harvested on the 20th day had the highest value in ash content (18 ± 3%). Potassium was found to be the main constituent in the ash of mushroom mycelia, which was followed by phosphorus, sodium, calcium, and magnesium. A steady increase of ash content was only noted in mycelia grown on WP. The calcium content of WP-grown mycelia was at least 10 times higher compared to mycelia grown in the control media regardless the harvesting time. Data in this research suggested that WP was more favorable than the synthetic media in the production of WSP, which is traditionally known for their medicinal value in L. edodes. [source] Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensisJOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2002M. Korakli Aims:,The metabolism by bifidobacteria of exopolysaccharide (EPS) produced by Lactobacillus sanfranciscensis was investigated. To evaluate the significance of the EPS produced by Lact. sanfranciscensis during dough fermentation on the overall prebiotic properties of bread, metabolism by bifidobacteria of water-soluble polysaccharides (WSP) from wheat and rye was investigated. Methods and Results:,Polyglucose and polyfructan contained in WSP from wheat and rye were metabolized by bifidobacteria. In contrast, WSP isolated from fermented doughs were not metabolized by bifidobacteria. The arabioxylan fraction of WSP was metabolized neither by bifidobacteria nor by lactobacilli. All the bifidobacteria tested were able to metabolize fructan from Lact. sanfranciscensis. The kinetics of EPS metabolism by various bifidobacteria were characterized by diauxic utilization of fructose and EPS. Conclusions:,Bifidobacteria metabolize fructan from Lact. sanfranciscensis. Polyfructan and the starch fractions from wheat and rye, which possess a bifidogenic effect, were degraded by cereal enzymes during dough fermentation, while the EPS were retained. Significance and Impact of the Study:,EPS produced by sourdough lactic acid bacteria will improve the nutritional properties of sourdough fermented products. [source] Interpolymer Complexes of Water-Soluble Nonionic Polysaccharides with Polycarboxylic Acids and Their ApplicationsMACROMOLECULAR BIOSCIENCE, Issue 6 2003Zauresh S. Nurkeeva Abstract Literature data as well as our own experimental results devoted to the complexation of polycarboxylic acids with various water-soluble polysaccharides (methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, starch, and dextran) by means of hydrogen bonding are systematized and analyzed. The specific peculiarities of interpolymer complexes based on polysaccharides-polycarboxylic acids are demonstrated. The perspectives for the application of these interpolymer complexes are considered. It was shown that these materials possess good biocompatibility and adhesive properties. The promising directions for further study of interpolymer complexes between polycarboxylic acids and nonionic polysaccharides as well as existing gaps in the knowledge in this field are pointed out. Formation of compact IPCs and hydrophilic interpolymer associates. [source] |