Water-in-oil Emulsions (water-in-oil + emulsion)

Distribution by Scientific Domains


Selected Abstracts


Recovery of lipase by adsorption at the n -hexadecane,water interface

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2003
Hui-Min Wang
Abstract A novel separation process based on the hydrophobic adsorption at the n -hexadecane,water interface was developed for the recovery of Acinetobacter radioresistens lipase from a pre-treated fermentation broth. In a mixture containing water, lipase and n -hexadecane, a water-in-oil emulsion was formed when the n -hexadecane-to-water ratio (o/w ratio) was larger than 3, and a large amount of lipase was found to be adsorbed at the interface. Compared with the oil-in-water emulsion (occurring when o/w ratio < 3), the water-in-oil emulsion generated smaller droplets and larger interfacial area, and was more stable. The harvested emulsion phase could be centrifuged to give an aqueous, concentrated lipase solution. Adsorption of lipase at the interface could be described by the Langmuir isotherm. For lipase concentrations ranging from 8.4 to 87.2 U cm,3, a single-stage adsorption resulted in a six- to four-fold concentration and 16,45% activity recovery, where lipase concentration was the dominant factor. A method using data from a single-stage adsorption to predict multiple-stage operation was described, and the agreement between the experimental and the predicted results was good. To improve the enzyme recovery, a multiple-run adsorption process was proposed. The use of salts enhanced the hydrophobic interaction between lipase and n -hexadecane. Advantages of the proposed process include simple operation, low operational cost, environmentally friendly, no requirement for pre-concentration of the enzyme solution, and negligible enzyme denaturation. Copyright © 2003 Society of Chemical Industry [source]


Micropipette manipulation: A technique to evaluate the stability of water-in-oil emulsions containing proteins

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2004
Lene Jorgensen
Abstract The interfacial properties and stability of water-in-oil emulsions containing protein were studied using micromanipulation. Micropipettes were used to produce individual water droplets in oil in a controlled manner on the micron scale. The pipettes were then used to bring two droplets into contact in order to observe fusion. The occurrence of fusion was investigated as a function of the compositions of both the continuous (oil) and dispersed (aqueous) phases. Various proteins, i.e., insulin, growth hormone, or serum albumin, were dissolved in the dispersed phase. When low concentrations of surfactants or no surfactant were present in the oil phase, a condensed protein film was formed at the surface of the droplets, which was revealed by the irregular topology of the droplet surface viewed with contrast microscopy. At higher surfactant concentrations, this topology was not observed nor was the stability apparently affected; emulsion droplets coalesce immediately upon contact with each other. There seems to be a limiting surfactant concentration, which stabilizes the droplets toward fusion and prevents formation of a condensed surface film, when the droplets contain protein. The technique exhibits potential for examination of the effects of various excipients on the coalescence stability of emulsion droplets. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2994,3003, 2004 [source]


Characterization of Vernix Caseosa as a Natural Biofilm: Comparison to Standard Oil-Based Ointments

PEDIATRIC DERMATOLOGY, Issue 4 2000
Maria Imelda B. Bautista M.D.
Such infants have a structurally immature stratum corneum and lack a surface coating of vernix caseosa. In this study we examined the short-term effects of topical application of vernix caseosa to human skin and contrasted these effects with commonly used ointments and water-in-oil emulsions. Specifically, vernix, Eucerin®, Aquaphor®, and petrolatum were applied to the volar skin surface of adult volunteers. Surface electrical capacitance (SEC) and transepidermal water loss (TEWL) were measured as indices of surface hydration. Sorption-desorption profiles were performed to determine skin surface hydrophobicity. Particular attention was given to monitoring the acute (0,120 minutes) changes following vernix treatment in order to compare these effects with earlier reports on the rate of skin surface drying in newborn infants following birth. Immediately after vernix application there was an increase in the rate of water loss from the skin surface. Relative to control skin and skin treated with the ointments and water-in-oil emulsions, the application of vernix to freshly bathed human skin resulted in a unique profile of temporal change in baseline surface hydration, moisture accumulation, and water-holding capacity. These results demonstrate major differences between human vernix and standard oil-based topical ointments. The results provide a framework for discussing the various properties of topical barriers applied to the very low birthweight infant. [source]