Watering Points (watering + point)

Distribution by Scientific Domains


Selected Abstracts


Why do some species in arid lands increase under grazing?

AUSTRAL ECOLOGY, Issue 5 2009
Mechanisms that favour increased abundance of Maireana pyramidata in overgrazed chenopod shrublands of South Australia
Abstract While the abundance of some plant species decreases under high grazing intensity, others become more abundant. Release from competition by decreaser species contributes to this pattern in mesic systems, but this may not be the case in xeric systems where competition may be less intense. Here we examine three mechanisms that may be involved: (i) increased recruitment and growth because of soil changes produced by grazing, for example, increased soil nutrient availability through dung accumulation; (ii) increased recruitment favoured by the breaking up of the lichen crust; and (iii) reduced competition because of the decline of decreaser species. We used field and glasshouse experiments to determine the possible contribution of these mechanisms to the increase of the chenopod Maireana pyramidata around a watering point in a chenopod shrubland of South Australia. There was no evidence of nutrient accumulation close to the watering point, and while seedlings of M. pyramidata responded to nutrient addition, their growth was the same in soil collected from areas with different grazing intensity. While a broken lichen crust increased the emergence of both M. pyramidata and the decreaser Atriplex vesicaria, the effect was larger for the former. We found no competition between seedlings of the two species or between juveniles of A. vesicaria and seedlings of M. pyramidata in glasshouse experiments. Adult plants of both A. vesicaria and M. pyramidata produced similar growth reduction in seedlings of M. pyramidata. Furthermore, a field removal experiment failed to detect any competitive effect of A. vesicaria on M. pyramidata. Our data indicate that the disintegration of the soil crust by grazer activities can be a major factor controlling floristic changes in overgrazed rangelands. These results imply that factors that control establishment may be more important than competition in shaping shrub population dynamics in these systems. Ground surface itself can affect establishment opportunities, and this should be taken into account in management and restoration efforts in arid lands. [source]


Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from livestock watering points

JOURNAL OF APPLIED ECOLOGY, Issue 2 2006
SIMON W. TODD
Summary 1Gradients of animal impact known as piospheres tend to develop around artificial watering points, particularly in arid zones. Such grazing gradients represent a potential opportunity for differentiating the long-term effects of livestock activity from other environmental patterns. In this study, the impact of watering point provision on the plant cover, species richness and community structure of Karoo shrublands, South Africa, was investigated in the context of the evolutionary history and current grazing management practices of the region. 2The impacts of watering point provision were investigated by sampling plant cover and composition along transects placed at set distances, ranging from 10 m to 2200 m, from 11 watering points. 3Karoo vegetation cover and structure are relatively resilient to livestock grazing. Karoo plant diversity, as measured by species richness, evenness and dominance, was not as resilient. Twice as many species decreased as increased near watering points. The majority of species that decreased were regarded as being highly palatable to livestock. Heavy grazing, leading to death or repeated reproductive failure, is the most likely mechanism leading to the decline of such species. 4The highly disturbed area immediately adjacent to watering points was dominated by forbs and contained a large proportion of alien species. Adjacent to this was a zone dominated by widespread shrub species of medium to low palatability. Areas most distant from watering points contained a greater proportion of species known to be highly palatable to livestock. The ability of dominant Karoo shrubs to tolerate heavy grazing may have allowed rangeland managers to maintain stocking rates above that which can be tolerated by the majority of species but which are supported by a minority of grazing-tolerant species. 5Synthesis and applications. Highly palatable species are more abundant in areas distant from water points. Larger paddocks therefore provide a refuge for sensitive species that might otherwise be lost from the rangeland as a whole. Species that tend to occur away from watering points represent potentially useful indicators of grazing pressure. The use of these species as indicators of rangeland condition among landowners should be promoted. [source]


The impact of cattle ranching on large-scale vegetation patterns in a coastal savanna in Tanzania

JOURNAL OF APPLIED ECOLOGY, Issue 3 2003
M. W. Tobler
Summary 1The success of large-scale cattle ranching in African savanna vegetation has often been limited by problems of bush encroachment and disease (in particular trypanosomiasis spread by tsetse flies). Mkwaja Ranch, occupying an area of 462 km2 on the coast of Tanzania, is a recent example of a large ranching enterprise that failed within the savanna environment. It was closed in 2000 after 48 years of operation. In this paper we describe the main vegetation types of the area (excluding closed forest vegetation) and relate their patterns of distribution to the former use of the ranch for cattle. 2The study area comprised the former ranch and parts of the adjacent Saadani Game Reserve, which had not been grazed by cattle for many years and had never been used for large-scale ranching. Following field surveys, 15 distinct types of grassland and bush vegetation were defined and a vegetation map was created using a Landsat TM satellite image. A multispectral classification using the maximum likelihood algorithm gave good results and enabled all 15 vegetation types to be distinguished on the map. 3Two main spatial trends were detected in the vegetation. One was a large-scale decrease in the cover of bushland from the most intensively used parts of the ranch through more extensively used areas to the game reserve; this trend was attributed to differences in management history as well as to climatic and topographic factors. A second trend was a radial vegetation pattern associated with the enclosures where cattle were herded at night. High amounts of three bushland types [dominated by (i) Acacia zanzibarica, (ii) Dichrostachys cinerea, Acacia nilotica or Acacia mellifera and (iii) Terminalia spinosa] occurred in a zone between 300 and 2500 m from the paddocks, with a peak in bush density at about 900 m (mean value for 18 paddocks). In contrast, bushland dominated by Hyphaene compressa was scarce close to the paddocks and became more abundant with distance. There was also a radial trend in the grassland communities: close to the paddocks there was short grass vegetation containing many ruderals and invasive weedy species, while the tall grassland types with species such as Hyperthelia dissoluta and Cymbopogon caesius occurred further away in the areas less affected by cattle. 4Synthesis and applications. The intensive modern livestock ranching as practised on Mkwaja Ranch proved to be unsustainable both economically and ecologically. In the end, the biggest problem faced by the ranch managers was not controlling disease, as had originally been feared, but preventing the spread of bush on pasture land. The results of our study demonstrate just how severe the problem of bush encroachment was, especially in areas close to paddocks. An important lesson for management is that grazing patterns need to be taken into consideration when determining the sustainable stocking rate for an area. To reduce the risk of bush encroachment in grazing systems with focal points such as paddocks or watering points, stocking rates need to be lower than in systems with a more uniform grazing distribution. [source]