Water Sources (water + source)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


PRODUCTION AND RELEASE OF GEOSMIN BY THE CYANOBACTERIUM OSCILLATORIA SPLENDIDA ISOLATED FROM A PHOENIX WATER SOURCE

JOURNAL OF PHYCOLOGY, Issue 2001
Article first published online: 24 SEP 200
Hu, Q.1, Sommerfeld, M.1 Lowry, D.1, Dempster, T.1, Westerhoff, P.2, Baker, L.3, Bruce, D. & Nguyen, M. L.2 1Department of Plant Biology and 2Department of Civil and Environmental Engineering, Arizona State University, Tempe, Arizona 85287; 3Baker Environmental Consulting, 8001 Greenwood Drive, Moundview, MN 55112 Geosmin is a common component of the off-flavors detected in the drinking water supply sources of metropolitan Phoenix (Arizona). A cyanobacterium, Oscillatoria splendida, was isolated from source water during incidents of elevated geosmin production and was implicated as a cause of earthy/musty off-flavors in the drinking water. Production of geosmin was found to be constitutive in O. splendida during all growth stages. Effects of environmental parameters on the growth characteristics, and on production and release of geosmin by O. splendida, was studied under laboratory conditions. The specific growth rate and cell-bound geosmin increased with increasing temperature from 12 to 26 °C, the range of water temperatures that occur in the drinking water supply. On a per-chlorophyll a basis, however, more geosmin was released from the cells at lower temperatures. An inverse relationship was evident between light intensity and O. splendida growth and the release of geosmin. Cell-bound geosmin, however, was higher at higher light intensities. Dark incubation initially stimulated the biosynthesis of geosmin, whereas a prolonged period of darkness (2-3 weeks) resulted in massive release of geosmin into the culture medium from lysis and cellular decomposition. Dissolved nitrogen appeared to be the limiting nutrient for O. splendida in the local water supply source. When nitrate was added to laboratory cultures, both growth and geosmin production increased. These results will be discussed in context with episodes of off-flavors in drinking waters in metropolitan Phoenix, Arizona. [source]


Effects of Diet and Water Source on the Nursery Production of Pacific White Shrimp Litopenaeus vannamei

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2001
Clete A. Otoshi
Penaeid shrimp reared in eutrophic pond water grow significantly faster than shrimp in clear well water, and this growth enhancement is especially pronounced in postlarval shrimp. The objective of this study was to determine if the nutritional benefits of pond water could supplement a lower protein feed for postlarval Pacific white shrimp Litopenaeus vannamei. Sixteen 230-L tanks were stocked with 10-d postlarvae at a density of 350 shrimp/tank. Four treatments (four replicates/treatment) were tested for 6 wk and consisted of: 1) shrimp grown in well water and fed a commercially available 45%-protein feed (W/45); 2) shrimp grown in pond water and fed the same 45%-protein feed (P/45); 3) shrimp grown in well water and fed a commercially available 52%-protein feed (W/ 52); and 4) shrimp grown in pond water and fed the same 52%-protein feed (P/52). At the end of the experiment. mean weight gain (± SE) for shrimp in pond water (1.85 ± 0.03 g) was significantly greater (P > 0.0001) than shrimp in well water (0.98 ± 0.10 g). Mean weight gain for shrimp fed the 52%-protein feed (1.56 ± 0.13 g) was significantly greater (P > 0.0001) than shrimp fed the 45%-protein feed (1.26 ± 0.20 g). In addition, there was a significant interaction effect between water source and feed (P > 0.0001). Mean weight gain for shrimp in the W/52 treatment (1.23 ± 0.04 g) was 68% greater than shrimp in the W/45 treatment (0.73 ± 0.03 g). However, mean weight gain for shrimp in the P/52 treatment (1.90 ± 0.03 g) was only 5% greater than shrimp in the P/45 treatment (1.80 ± 0.04 g). These results suggest that organically rich pond water provides postlarval shrimp with sufficient nutrients to compensate for nutritional deficiencies associated with a lower protein feed. [source]


Water Sources of Dominant Species in Three Alpine Ecosystems on the Tibetan Plateau, China

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 3 2008
De-Yu Duan
Abstract Plant water sources were estimated by two or three compartment linear mixing models using hydrogen and oxygen isotope (,D and ,18O) values of different components such as plant xylem water, precipitation and river water as well as soil water on the Tibetan Plateau in the summer of 2005. Four dominant species (Quercus aquifolioides, Pinus tabulaeformis, Salix rehderiana and Nitraria tangutorum) in three typical ecosystems (forest, shrub and desert) were investigated in this study. Stable isotope ratios of the summer precipitations and the soil water presented variations in spatial and temporal scales. ,18O values of N. tangutorum xylem water were constant in the whole growth season and very similar to those of deep soil water. Water sources for all of the plants came from both precipitations and soil water. Plants switched rapidly among different water sources when environmental water conditions changed. Rainwater had different contributions to the plants, which was influenced by amounts of precipitation. The percentage of plant xylem water derived from rainwater rose with an increase in precipitation. Water sources for broad-leaved and coniferous species were different although they grew in the same environmental conditions. For example, the broad-leaved species Q. aquifolioides used mainly the water from deep soil, while 92.5% of xylem water of the coniferous species P. tabulaeformis was derived from rainwater during the growth season. The study will be helpful for us to fully understand responses of species on the Tibetan Plateau to changes in precipitation patterns, and to assess accurately changes of vegetation distribution in the future. [source]


Water Sources and Water-Use Efficiency in Mediterranean Coastal Dune Vegetation

PLANT BIOLOGY, Issue 3 2004
G. A. Alessio
Abstract: In coastal environments plants have to cope with various water sources: rainwater, water table, seawater, and mixtures. These are usually characterized by different isotopic signatures (18O/16O and D/H ratios). Xylem water reflects the isotopic compositions of the water sources. Additionally, water-use efficiency (WUE) can be assessed with carbon isotope discrimination (,) analyses. Gas exchange, , of leaf dry matter, and isotopic composition (,18O) of xylem water were measured from June to August 2001 in herbaceous perennials of mobile dunes (Ammophila littoralis, Elymus farctus) and sclerophyllous shrubs and climbers (Arbutus unedo, Pistacia lentiscus, Phillyrea angustifolia, Qercus ilex, Juniperus oxycedrus, Smilax aspera) of consolidated dunes. Assimilation rates were rather low and did not show clear seasonal patterns, possibly due to limited precipitation and generally low values of stomatal conductance. The lowest values were shown in S. aspera. Different physiological patterns were found, on the basis of ,18O and , analyses. Values of ,18O of xylem water of phanerophytes were remarkably constant and matched those of the water table, indicating dependence on a reliable water source; values of , were relatively high, indicating low intrinsic WUE, with the exception of J. oxycedrus. Surprisingly, very high ,18O values were found for the xylem water from S. aspera in August. This suggests retrodiffusion of leaf water to xylem sap in the stem or direct uptake of water by leaves or stems, owing to dew or fog occurrence. Low , values indicated high WUE in S. aspera. Contrasting strategies were shown by the species of mobile dunes: E. farctus relied on superficial water and exhibited low WUE, accordingly to its therophyte-like vegetative cycle; on the contrary, A. littoralis used deeper water sources, showing higher WUE in relation to its long-lasting vegetative habit. [source]


Water Sources of Dominant Species in Three Alpine Ecosystems on the Tibetan Plateau, China

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 3 2008
De-Yu Duan
Abstract Plant water sources were estimated by two or three compartment linear mixing models using hydrogen and oxygen isotope (,D and ,18O) values of different components such as plant xylem water, precipitation and river water as well as soil water on the Tibetan Plateau in the summer of 2005. Four dominant species (Quercus aquifolioides, Pinus tabulaeformis, Salix rehderiana and Nitraria tangutorum) in three typical ecosystems (forest, shrub and desert) were investigated in this study. Stable isotope ratios of the summer precipitations and the soil water presented variations in spatial and temporal scales. ,18O values of N. tangutorum xylem water were constant in the whole growth season and very similar to those of deep soil water. Water sources for all of the plants came from both precipitations and soil water. Plants switched rapidly among different water sources when environmental water conditions changed. Rainwater had different contributions to the plants, which was influenced by amounts of precipitation. The percentage of plant xylem water derived from rainwater rose with an increase in precipitation. Water sources for broad-leaved and coniferous species were different although they grew in the same environmental conditions. For example, the broad-leaved species Q. aquifolioides used mainly the water from deep soil, while 92.5% of xylem water of the coniferous species P. tabulaeformis was derived from rainwater during the growth season. The study will be helpful for us to fully understand responses of species on the Tibetan Plateau to changes in precipitation patterns, and to assess accurately changes of vegetation distribution in the future. [source]


The Water Crisis in the Gaza Strip: Prospects for Resolution

GROUND WATER, Issue 5 2005
E. Weinthal
Israel and the Palestinian Authority share the southern Mediterranean coastal aquifer. Long-term overexploitation in the Gaza Strip has resulted in a decreasing water table, accompanied by the degradation of its water quality. Due to high levels of salinity and nitrate and boron pollution, most of the ground water is inadequate for both domestic and agricultural consumption. The rapid rate of population growth in the Gaza Strip and dependence upon ground water as a single water source present a serious challenge for future political stability and economic development. Here, we integrate the results of geochemical studies and numerical modeling to postulate different management scenarios for joint management between Israel and the Palestinian Authority. The chemical and isotopic data show that most of the salinity phenomena in the Gaza Strip are derived from the natural flow of saline ground water from Israel toward the Gaza Strip. As a result, the southern coastal aquifer does not resemble a classic "upstream-downstream" dispute because Israel's pumping of the saline ground water reduces the salinization rates of ground water in the Gaza Strip. Simulation of different pumping scenarios using a monolayer, hydrodynamic, two-dimensional model (MARTHE) confirms the hypothesis that increasing pumping along the Gaza Strip border combined with a moderate reduction of pumping within the Gaza Strip would improve ground water quality within the Gaza Strip. We find that pumping the saline ground water for a source of reverse-osmosis desalination and then supplying the desalinated water to the Gaza Strip should be an essential component of a future joint management strategy between Israel and the Palestinian Authority. [source]


Flowpath Delineation and Ground Water Age, Allequash Basin, Wisconsin

GROUND WATER, Issue 7 2003
Christine D. Pint
An analysis of ground water flowpaths to a lake and creek in northern Wisconsin shows the flow system in a geologically simple basin dominated by lakes can be surprisingly complex. Differences in source area, i.e., lakes or terrestrial, combined with the presence of intervening lakes, which may or may not capture underflowing ground water as water moves downgradient from recharge areas, contribute to a complex mix of flowpaths. The result is water of different chemistry and vastly different ages may discharge in close proximity. Flowpaths, travel times, and capture zones in the Allequash Basin in northern Wisconsin were delineated using particle tracking based on a calibrated steady-state ground water flow model. The flowpath analysis supports the conclusions of Walker et al. (2003) who made inferences about flowpath characteristics from isotope and major ion chemistry. Simulated particle tracking agreed with Walker et al.'s measurements of water source (lake or terrestrial recharge) in the stream subsurface and also supported their assertion that ground water with a high calcium concentration in the lower basin of Allequash Lake is derived from long flowpaths. Numerical simulations show that ground water discharging in this area originates more than 5 km away in a source area located upgradient of Big Muskellunge Lake, which is upgradient of Allequash Lake. These results graphically illustrate that in settings with multiple sources of water with different age characteristics and converging flowlines (like the Allequash Basin) it may be difficult to obtain accurate estimates of ground water age by chemical analyses of ground water. [source]


Hydrological versus biogeochemical controls on catchment nitrate export: a test of the flushing mechanism

HYDROLOGICAL PROCESSES, Issue 20 2006
Carlos J. Ocampo
Abstract Deciphering the connection between streamflows and nitrate (NO,3) discharge requires identification of the various water flow pathways within a catchment, and the different time-scales at which hydrological and biogeochemical processes occur. Despite the complexity of the processes involved, many catchments around the world present a characteristic flushing response of NO,3 export. Yet the controls on the flushing response, and how they vary across space and time, are still not clearly understood. In this paper, the ,flushing response' of NO,3 export from a rural catchment in Western Australia was investigated using isotopic (deuterium), chemical (chloride, NO,3), and hydrometric data across different antecedent conditions and time-scales. The catchment streamflow was at all time-scales dominated by a pre-event water source, and the NO,3 discharge was correlated with the magnitude of areas contributing to saturation overland flow. The NO,3 discharge also appeared related to the shallow groundwater dynamics. Thus, the antecedent moisture condition of the catchment at seasonal and interannual time-scales had a major impact on the NO,3 flushing response. In particular, the dynamics of the shallow ephemeral perched aquifer drove a shift from hydrological controls on NO,3 discharge during the ,early flushing' stage to an apparent biogeochemical control on NO,3 discharge during the ,steady decline' stage of the flushing response. This temporally variable control hypothesis provides a new and alternative description of the mechanisms behind the commonly seen flushing response. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Water quality and hydrogeochemical characteristics of the River Buyukmelen, Duzce, Turkey

HYDROLOGICAL PROCESSES, Issue 20 2005
Rustem Pehlivan
Abstract The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s,1. The geological succession in the basin comprises limestone and dolomitic limestone of the Y,lanl, formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano-clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved. The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2,4, Cl, and HCO3, in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2,4, HCO,3, Cl,, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks. The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l,1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river-bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay-rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water,rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking-water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl,, and SO2,4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking-water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water

HYDROLOGICAL PROCESSES, Issue 6 2003
A. Sugimoto
Abstract Soil moisture and its isotopic composition were observed at Spasskaya Pad experimental forest near Yakutsk, Russia, during summer in 1998, 1999, and 2000. The amount of soil water (plus ice) was estimated from volumetric soil water content obtained with time domain reflectometry. Soil moisture and its ,18O showed large interannual variation depending on the amount of summer rainfall. The soil water ,18O decreased with soil moisture during a dry summer (1998), indicating that ice meltwater from a deeper soil layer was transported upward. On the other hand, during a wet summer (1999), the ,18O of soil water increased due to percolation of summer rain with high ,18O values. Infiltration after spring snowmelt can be traced down to 15 cm by the increase in the amount of soil water and decrease in the ,18O because of the low ,18O of deposited snow. About half of the snow water equivalent (about 50 mm) recharged the surface soil. The pulse of the snow meltwater was, however, less important than the amount of summer rainfall for intra-annual variation of soil moisture. Excess water at the time just before soil freezing, which is controlled by the amount of summer rainfall, was stored as ice during winter. This water storage stabilizes the rate of evapotranspiration. Soil water stored in the upper part of the active layer (surface to about 120 cm) can be a water source for transpiration in the following summer. On the other hand, once water was stored in the lower part of the active layer (deeper than about 120 cm), it would not be used by plants in the following summer, because the lower part of the active layer thaws in late summer after the plant growing season is over. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Antibiotic-resistant Gram-negative bacteria in a virtually closed water reticulation system

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2000
S.G. Mulamattathil
The effect of the effluent from a chicken meat-processing plant on the antibiotic-resistant bacterial profile was investigated in an almost closed water reticulation system. Of the 273 faecal coliform isolates 256 (93%) were resistant to one or more of the eight antibiotics tested. The most prevalent isolates were for the ,-lactam antibiotics ampicillin and cephalothin followed by the sulphonamides sulphatriad and cotrimoxazole. Eleven different resistance patterns were identified with a single pattern, comprising of ampicillin-, cephalothin-, streptomycin-, sulphatriad-, cotrimoxazole- and tetracyclin-resistant isolates, dominating the meat-processing effluent. An apparent correlation was observed between the specific use of certain antibiotics and the prevalence of the corresponding resistant bacterial isolates. The drugs used to treat the occasional infections, belonging to the ,-lactam and sulphonamide group of antibiotics, seemed to have a more pronounced effect on the antibiotic-resistant bacterial profile in the primary water source than those drugs used as feed additives, oxytetracyclin and the aminoglycoside flavomycin. [source]


Effects of Diet and Water Source on the Nursery Production of Pacific White Shrimp Litopenaeus vannamei

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2001
Clete A. Otoshi
Penaeid shrimp reared in eutrophic pond water grow significantly faster than shrimp in clear well water, and this growth enhancement is especially pronounced in postlarval shrimp. The objective of this study was to determine if the nutritional benefits of pond water could supplement a lower protein feed for postlarval Pacific white shrimp Litopenaeus vannamei. Sixteen 230-L tanks were stocked with 10-d postlarvae at a density of 350 shrimp/tank. Four treatments (four replicates/treatment) were tested for 6 wk and consisted of: 1) shrimp grown in well water and fed a commercially available 45%-protein feed (W/45); 2) shrimp grown in pond water and fed the same 45%-protein feed (P/45); 3) shrimp grown in well water and fed a commercially available 52%-protein feed (W/ 52); and 4) shrimp grown in pond water and fed the same 52%-protein feed (P/52). At the end of the experiment. mean weight gain (± SE) for shrimp in pond water (1.85 ± 0.03 g) was significantly greater (P > 0.0001) than shrimp in well water (0.98 ± 0.10 g). Mean weight gain for shrimp fed the 52%-protein feed (1.56 ± 0.13 g) was significantly greater (P > 0.0001) than shrimp fed the 45%-protein feed (1.26 ± 0.20 g). In addition, there was a significant interaction effect between water source and feed (P > 0.0001). Mean weight gain for shrimp in the W/52 treatment (1.23 ± 0.04 g) was 68% greater than shrimp in the W/45 treatment (0.73 ± 0.03 g). However, mean weight gain for shrimp in the P/52 treatment (1.90 ± 0.03 g) was only 5% greater than shrimp in the P/45 treatment (1.80 ± 0.04 g). These results suggest that organically rich pond water provides postlarval shrimp with sufficient nutrients to compensate for nutritional deficiencies associated with a lower protein feed. [source]


Differential osmoregulatory capabilities of common spiny mice (Acomys cahirinus) from adjacent microhabitats

JOURNAL OF ZOOLOGY, Issue 1 2003
Uri Shanas
Abstract The osmoregulatory function of common spiny mice Acomys cahirinus living on opposite slopes of the lower Nahal Oren (,Evolution Canyon') on mount Carmel, Israel, was investigated by increasing the salinity of the water source whilst maintaining a high-protein diet. The southern-facing slope (SFS) of this canyon differs from the northern-facing slope (NFS) as it receives considerably more solar radiation and consequently forms a more xeric, sparsely vegetated habitat. During the summer, mice living on the two opposite slopes significantly differed in their urine osmolality, which also increased significantly as dietary salinity increased. Offspring of wild-captured mice, born in captivity, and examined during the winter, continued to show a difference in osmoregulatory function depending on the slope of origin. However, they differed from wild-captured mice, as they did not respond to the increase in dietary salinity by increasing the concentration of their urine, but rather by increasing the volume of urine produced. This study shows that A. cahirinus occupying different microhabitats may exhibit differences in their ability to concentrate urine and thus in their ability to withstand xeric conditions. We suggest that they may also differ genetically, as offspring from the NFS and SFS retain physiological differences, but further studies will be needed to confirm this hypothesis. [source]


Geochemistry and source waters of rock glacier outflow, Colorado Front Range

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 1 2006
M. W. Williams
Abstract We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900,µeq,L,1 compared to values of less than 40,µeq,L,1 at all the other sites, concentrations of Ca2+ were greater than 4,000,µeq,L,1 compared to maximum values of less than 200,µeq,L,1 at all other sites, and concentrations of SO reached 7,000,µeq,L,1, compared to maximum concentrations below 120,µeq,L,1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end,member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ,18O from ,10, in the outflow of the rock glacier compared to ,20, in snow and enrichment of deuterium excess from +,17.5, in rock glacier outflow compared to +,11, in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Water Sources and Water-Use Efficiency in Mediterranean Coastal Dune Vegetation

PLANT BIOLOGY, Issue 3 2004
G. A. Alessio
Abstract: In coastal environments plants have to cope with various water sources: rainwater, water table, seawater, and mixtures. These are usually characterized by different isotopic signatures (18O/16O and D/H ratios). Xylem water reflects the isotopic compositions of the water sources. Additionally, water-use efficiency (WUE) can be assessed with carbon isotope discrimination (,) analyses. Gas exchange, , of leaf dry matter, and isotopic composition (,18O) of xylem water were measured from June to August 2001 in herbaceous perennials of mobile dunes (Ammophila littoralis, Elymus farctus) and sclerophyllous shrubs and climbers (Arbutus unedo, Pistacia lentiscus, Phillyrea angustifolia, Qercus ilex, Juniperus oxycedrus, Smilax aspera) of consolidated dunes. Assimilation rates were rather low and did not show clear seasonal patterns, possibly due to limited precipitation and generally low values of stomatal conductance. The lowest values were shown in S. aspera. Different physiological patterns were found, on the basis of ,18O and , analyses. Values of ,18O of xylem water of phanerophytes were remarkably constant and matched those of the water table, indicating dependence on a reliable water source; values of , were relatively high, indicating low intrinsic WUE, with the exception of J. oxycedrus. Surprisingly, very high ,18O values were found for the xylem water from S. aspera in August. This suggests retrodiffusion of leaf water to xylem sap in the stem or direct uptake of water by leaves or stems, owing to dew or fog occurrence. Low , values indicated high WUE in S. aspera. Contrasting strategies were shown by the species of mobile dunes: E. farctus relied on superficial water and exhibited low WUE, accordingly to its therophyte-like vegetative cycle; on the contrary, A. littoralis used deeper water sources, showing higher WUE in relation to its long-lasting vegetative habit. [source]


Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals

PLANT CELL & ENVIRONMENT, Issue 6 2008
CASANDRA REYES-GARCÍA
ABSTRACT The 18O signals in leaf water (,18Olw) and organic material were dominated by atmospheric water vapour 18O signals (,18Ovap) in tank and atmospheric life forms of epiphytic bromeliads with crassulacean acid metabolism (CAM), from a seasonally dry forest in Mexico. Under field conditions, the mean ,18Olw for all species was constant during the course of the day and systematically increased from wet to dry seasons (from 0 to +6,), when relative water content (RWC) diminished from 70 to 30%. In the greenhouse, progressive enrichment from base to leaf tip was observed at low night-time humidity; under high humidity, the leaf tip equilibrated faster with ,18Ovap than the other leaf sections. Laboratory manipulations using an isotopically depleted water source showed that ,18Ovap was more rapidly incorporated than liquid water. Our data were consistent with a Craig,Gordon (C-G) model as modified by Helliker and Griffiths predicting that the influx and exchange of ,18Ovap control ,18Olw in certain epiphytic life forms, despite progressive tissue water loss. We use ,18Olw signals to define water-use strategies for the coexisting species which are consistent with habitat preference under natural conditions and life form. Bulk organic matter (,18Oorg) is used to predict the ,18Ovap signal at the time of leaf expansion. [source]


Bauxite Mining Restoration by Alcoa World Alumina Australia in Western Australia: Social, Political, Historical, and Environmental Contexts

RESTORATION ECOLOGY, Issue 2007
John H. Gardner
Abstract Alcoa World Alumina Australia mines bauxite under lease agreements with the Government of Western Australia. The leases lie in the Darling Range to the east of Perth, the capital and major population center. In addition to bauxite and other mineral ores, the Darling Range is a major potable water source and harbors a species-rich forest dominated by Jarrah (Eucalyptus marginata), a significant commercial timber. Conservation and recreation are important land uses in the region. Social and political pressures have led to stringent governmental requirements for restoration. In addition, a summer drought period, a soil deficient in most nutrients, water management challenges, an introduced disease, caused by Phytophthora cinnamomi Rands, and a post-mining ecosystem that must be conducive to the prescribed burning management of the region pose significant challenges to successful restoration. Alcoa presently mines and restores approximately 550 ha per annum. Although the "footprint" at the end of the life of the mining operations represents only about 4% of the total forest estate, Alcoa is committed to restoring the forest values of the region of all lands impacted by mining. The major objective of restoration is to enhance or maintain forest values by restoring habitat and structural characteristics of the native forest environment. Completion criteria for Alcoa's mine restoration have been developed. The original Alcoa mine at Jarrahdale has been rehabilitated, and in 2005, a 975-ha area received a "certificate of completion" and was returned to the management control of the State of Western Australia. [source]


Life on the edge , to which degree does phreatic water sustain vegetation in the periphery of the Taklamakan Desert?

APPLIED VEGETATION SCIENCE, Issue 1 2010
Helge Bruelheide
Abstract Questions: Do the vegetation-specific patterns in the forelands of river oases of the Taklamakan Desert provide clues to the degree to which a vegetation type depends on unsaturated soil moisture, brought about by extensive floodings, or phreatic water? Location: Foreland of the Qira oasis on the southern rim of the Taklamakan Desert, Xinjiang Uygur Autonomous Region, China. Methods: A vegetation map was prepared using a SPOT satellite image and ground truthing. Measurements of soil water contents were obtained from a flooding experiment and transformed into water potentials. Sum excedance values were calculated as the percentage of days on which different thresholds of soil water potentials were transgressed. Groundwater depth was mapped by drilling 30 groundwater holes and extrapolating the distances to the whole study area. Results: The vegetation was characterized by only six dominant or codominant species: Alhagi sparsifolia, Karelinia caspia, Populus euphratica, Tamarix ramosissima, Calligonum caput-medusae and Phragmites australis. The vegetation patterns encountered lacked any linear features typical of phreatophytes, thus not allowing direct conclusions on the type of the sustaining water sources. Soil water potentials never transgressed a threshold of pF 5 (,10 MPa) in horizons above the capillary fringe during periods without inundation, thus representing water not accessible for plants. Depth to the groundwater ranged between 2.3 and 17.5 m among plots and varied between 1.7 and 8.0 m within a plot owing to dune relief. The seven main vegetation types showed distinct niches of groundwater depths, corresponding to the observed concentric arrangement of vegetation types around the oasis. Conclusions: Inundation by flooding and unsaturated soil moisture are irrelevant for the foreland vegetation water supply. Although distances to the groundwater table can reach about 20 m, which is exceptionally large for phreatophytes, groundwater is the only water source for all vegetation types in the oasis foreland. In consequence, successful maintenance of oasis foreland vegetation will crucially depend on providing non-declining ground water tables. [source]


The effects of water source and secondary water treatment on flame angelfish Centropyge loriculus (Günther) reproduction

AQUACULTURE RESEARCH, Issue 10 2010
Chatham K Callan
Abstract This study was conducted to determine whether water source and water treatment affected flame angelfish (Centropyge loriculus) reproduction. Flame angelfish broodstock were maintained and monitored for reproductive performance (fecundity, egg fertilization rates and egg viability) in either untreated well-water (WW), sterilized ocean water (OW) or WW treated by intensive recirculation treatment (biological filtration, protein skimming, UV sterilization and mechanical filtration) (RAS). Results of this experiment indicated that although pairs maintained in WW initially exhibited good spawning performance, fecundity, egg fertilization rates and egg viability declined after 25 weeks. Treatment of WW by recirculation did not significantly improve flame angelfish reproductive performance with only moderately improved fecundity compared with pairs in the WW treatment. In contrast, pairs held in sterilized OW exhibited significantly greater fecundity, egg fertilization rates and egg viability from week 25 onwards than pairs in either the WW or RAS treatments. However, in the process of developing OW biosecurity protocols, we found that sterilization of OW using chlorine at levels >25 mg L,1 (30 min) negatively affected flame angelfish egg fertilization rates indicating that alternative methods of water sterilization may be warranted. [source]


Home range dynamics of the yellow-footed rock-wallaby (Petrogale xanthopus celeris) in central-western Queensland

AUSTRAL ECOLOGY, Issue 1 2009
ANDY SHARP
Abstract Analyses of the interspecific differences in macropod home range size suggest that habitat productivity exerts a greater influence on range size than does body mass. This relationship is also apparent within the rock-wallaby genus. Lim reported that yellow-footed rock-wallabies (Petrogale xanthopus xanthopus) inhabiting the semi-arid Flinders Ranges (South Australia) had a mean home range of 170 ha. While consistent with the hypothesis that species inhabiting less productive habitats will require larger ranges to fulfil their energetic requirements, the ranges reported by Lim were considerably larger than those observed for heavier sympatric macropods. The aim of the current study was to document the home range dynamics of P. x. celeris in central-western Queensland and undertake a comparison with those reported for their southern counterparts. Wallaby movements were monitored at Idalia National Park, between winter 1992 and winter 1994. Male foraging ranges (95% fixed kernel; 15.4 ha, SD = ±7.8 ha) were found to be significantly larger than those of female wallabies (11.3 ha, SD = ±4.9 ha). Because of varying distances to the wallabies' favoured foraging ground (i.e. an adjacent herb field), the direction in which the wallabies moved to forage also significantly affected range size. Mean home range size was estimated to be 23.5 ha (SD = ±15.2 ha; 95% fixed kernel) and 67.5 ha (SD = ±22.4 ha; 100% minimum convex polygon). The discrepancy between these two estimates resulted from the exclusion of locations, from the 95% kernel estimates, when the wallabies moved to a water source 1.5 km distant from the colony site. The observed foraging and home ranges approximated those that could be expected for a macropod inhabiting the semi-arid zone (i.e. 2.4 times larger-than-predicted from body mass alone). Possible reasons for the disparity between the current study and that of Lim are examined. [source]


Magmatic Gold Mineralization in the Western Qinling Orogenic Belt: Geology and Metallogenesis of the Baguamiao, Liba and Xiaogouli Gold Deposits

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2004
FENG Jianzhong
Abstract, The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1,244 Ma) is identical with that of the gold deposits (131.91,232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution. [source]


Helicobacter pylori infection in children: population-based age-specific prevalence and risk factors in a developing country

ACTA PAEDIATRICA, Issue 2 2010
W Jafri
Abstract Aim:, We estimated the prevalence, age of acquisition and risk factors for Helicobacter pylori (H. pylori) seroprevalence in children aged 1,15 years. Methods:, Exposure was assessed using ELISA. Parents responded to a questionnaire regarding number of individuals sharing house, rooms, water source, latrines, housing and assessment of socioeconomic status (SES) by Hollingshead Index. Results:, Serum of 1976 children was tested. Helicobacter pylori seropositivity in children aged 11,15 years was 53.5% (OR: 2.0, 95% CI: 1.58,2.5). It increased with moderate crowding index (CRI) of 2,4 to 45.9% (OR: 1.23, 95% CI: 0.92,1.63) and to 51.2% with CRI >4 (OR: 1.52, 95% CI: 1.12,2.06). In middle SES, seropositivity was 50.5% (331/655) (OR: 1.7, 95% CI: 1.29,2.35), whereas in lower SES, it was 47.1% (500/1062) (OR: 1.5, 95% CI: 1.1,2.0). Multivariate analysis showed that Helicobacter pylori seroprevalence was high in children aged 6,10 and 11,15 years (OR: 1.5, 95% CI: 1.2,1.9 and OR: 1.9, 95% CI: 1.56,2.47 respectively), in lower-middle SES (OR: 1.6, 95% CI: 1.2,2.1 and OR: 1.5, 95% CI: 1.10,2.0 respectively) and in uneducated fathers (OR: 1.58, 95% CI: 1.27,1.95). Conclusion:,Helicobacter pylori seropositivity increases with age, in low-middle SES and is related to father's educational status. Reducing H. pylori seroprevalence will require improvement in sanitary conditions and educational status of the population. [source]


Hydrological connectivity of soil pipes determined by ground-penetrating radar tracer detection

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2004
Joseph Holden
Abstract Soil pipes are common and important features of many catchments, particularly in semi-arid and humid areas, and can contribute a large proportion of runoff to river systems. They may also signi,cantly in,uence catchment sediment and solute yield. However, there are often problems in ,nding and de,ning soil pipe networks which are located deep below the surface. Ground-penetrating radar (GPR) has been used for non-destructive identi,cation and mapping of soil pipes in blanket peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This paper presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Sodium chloride was injected into pipe cavities previously detected by the radar. The GPR was placed downslope of the injection points and positioned on the ground directly above detected soil pipes. The resultant radargrams showed signi,cant changes in re,ectance from some cavities and no change from others. Pipe waters were sampled in order to check the radar results. Changes in electrical conductivity of the pipe water could be detected by the GPR, without data post-processing, when background levels were increased by more than approximately twofold. It was thus possible to rapidly determine hydrological connectivity of soil pipes within dense pipe networks across hillslopes without ground disturbance. It was also possible to remotely measure travel times through pipe systems; the passing of the salt wave below the GPR produced an easily detectable signal on the radargram which required no post-processing. The technique should allow remote sensing of water sources and sinks for soil pipes below the surface. The improved understanding of ,owpath connectivity will be important for understanding water delivery, solutional and particulate denudation, and hydrological and geomorphological model development. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The MTBE Threat to Our Water Supply: How to Detect and Remediate It

ENVIRONMENTAL QUALITY MANAGEMENT, Issue 4 2001
David Kahler
Methyl tertiary butyl ether, a gasoline additive once used to reduce air pollution, is now contaminating water sources around the United States. Monitoring for this chemical,and remediating it where it is found,should be an environmental priority. © 2001 John Wiley & Sons, Inc. [source]


Elucidating the factors influencing the biodegradation of cylindrospermopsin in drinking water sources

ENVIRONMENTAL TOXICOLOGY, Issue 3 2008
Maree J. Smith
Abstract The cyanotoxin cylindrospermopsin (CYN) is produced by several species of cyanobacteria and can be persistent in drinking waters supplies, which is of major concern to water authorities because of its potential to severely compromise human health. Consequently, there is a need to fully understand the persistence of CYN in water supplies, in particular, to determine whether this toxin is readily degraded by endemic aquatic organisms. This study provides insights into the environmental factors that can influence the biodegradation of this toxin in Australian drinking water supplies. Biodegradation of CYN was only evident in water supplies that had a history of toxic Cylindrospermopsis raciborskii blooms. In addition, lag periods were evident prior to the onset of biodegradation; however, repeated exposure of the endemic organisms to CYN resulted in substantial decreases in the lag periods. Furthermore, the concentration of CYN was shown to influence biodegradation with a near linear relationship (R2 of 0.9549) existing between the biodegradation rate and the initial CYN concentration. Temperature was also shown to affect the biodegradation of CYN, which is important since CYN is now being detected in more temperate climates. The presence of copper-based algicides inhibited CYN degradation, which has significant implications since copper-based algicides are commonly used to control cyanobacterial growth in water bodies. The results from this study indicate that the biodegradation of CYN in natural water bodies is a complex process that can be influenced by many environmental factors, some of which include CYN concentration, temperature, and the presence of copper-based algicides. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2008. [source]


Agricultural pesticides and selected degradation products in five tidal regions and the main stem of Chesapeake Bay, USA

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2007
Laura L. McConnell
Abstract Nutrients, sediment, and toxics from water sources and the surrounding airshed are major problems contributing to poor water quality in many regions of the Chesapeake Bay, an important estuary located in the mid-Atlantic region of the United States. During the early spring of 2000, surface water samples were collected for pesticide analysis from 18 stations spanning the Chesapeake Bay. In a separate effort from July to September of 2004, 61 stations within several tidal regions were characterized with respect to 21 pesticides and 11 of their degradation products. Three regions were located on the agricultural Delmarva Peninsula: The Chester, Nanticoke, and Pocomoke Rivers. Two regions were located on the more urban western shore: The Rhode and South Rivers and the Lower Mobjack Bay, including the Back and Poquoson Rivers. In both studies, herbicides and their degradation products were the most frequently detected chemicals. In 2000, atrazine and metolachlor were found at all 18 stations. In 2004, the highest parent herbicide concentrations were found in the upstream region of Chester River. The highest concentration for any analyte in these studies was for the ethane sulfonic acid of metolachlor (MESA) at 2,900 ng/L in the Nanticoke River. The degradation product MESA also had the greatest concentration of any analyte in the Pocomoke River (2,100 ng/L) and in the Chester River (1,200 ng/L). In the agricultural tributaries, herbicide degradation product concentrations were more strongly correlated with salinity than the parent herbicides. In the two nonagricultural watersheds on the western shore, no gradient in herbicide concentrations was observed, indicating the pesticide source to these areas was water from the Bay main stem. [source]


Perchlorate assessment of the Nakdong and Yeongsan watersheds, Republic of Korea

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2007
Oscar Quiñones
Abstract The objective of the present study was to conduct a preliminary assessment for perchlorate in surface water, drinking water, and wastewater treatment plant effluent samples obtained from the Nakdong and Yeongsan watersheds in the Republic of Korea. Samples were analyzed for perchlorate using ion chromatography with suppressed conductivity detection (IC-CD) and/or liquid chromatography with tandem mass spectrometry detection (LC-MS/MS). Method reporting limits were 5.0 ,g/L for IC-CD and 0.05 ,g/L for LC-MS/MS analysis. At perchlorate levels above 5.0 ,g/L, IC-CD and LC-MS/MS provided comparable results. The levels of perchlorate detected in the samples procured from the Yeongsan watershed were <5.0 ,g/L in each case. However, Nakdong watershed samples contained perchlorate at levels up to 60 ,g/L. The highest concentrations of perchlorate were found in surface water samples, although drinking water contained perchlorate at concentrations up to 35 ,g/L. In a subset of samples analyzed by LC-MS/MS, chlorate and bromate also were detected at concentrations ranging from <0.10 to 44 ,g/L and <0.10 to 2.6 ,g/L, respectively. To the best of the authors' knowledge, this is the first perchlorate assessment reported for water sources in the Republic of Korea. [source]


Freshwater availability as the constraining factor in the Middle Paleoindian occupation of North-Central Florida

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 3 2009
David K. Thulman
The locations of reliable surface water exposures during the Middle Paleoindian period (10,800,10,200 14C yr B.P.) in north-central Florida are reconstructed and compared to the concentrations of Middle Paleoindian projectile points. Estimates of water table levels and surface water flow in Florida's karst geology confirm prior climate reconstructions for that time indicating the area was arid and supported a xeric ecology in most upland locales. Surface water flow data from recent extreme droughts and water table estimations are used to identify the areas of highest probability for surface water availability. The distribution of the highest concentrations of Middle Paleoindian points correlates with the areas of highest probability, indicating that scarce surface water sources were the strongest constraint on occupation location during that time. © 2009 Wiley Periodicals, Inc. [source]


Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment

GLOBAL CHANGE BIOLOGY, Issue 2 2006
RUSSELL L. SCOTT
Abstract Across many dryland regions, historically grass-dominated ecosystems have been encroached upon by woody-plant species. In this paper, we compare ecosystem water and carbon dioxide (CO2) fluxes over a grassland, a grassland,shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody-plant encroachment on important ecosystem processes. All three sites were located in the riparian corridor of a river in the southwest US. As such, plants in these ecosystems may have access to moisture at the capillary fringe of the near-surface water table. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with increasing woody-plant dominance. Growing season ET totals were 407, 450, and 639 mm in the grassland, shrubland, and woodland, respectively, and in excess of precipitation by 227, 265, and 473 mm. This excess was derived from groundwater, especially during the extremely dry premonsoon period when this was the only source of moisture available to plants. Access to groundwater by the deep-rooted woody plants apparently decouples ecosystem ET from gross ecosystem production (GEP) with respect to precipitation. Compared with grasses, the woody plants were better able to use the stable groundwater source and had an increased net CO2 gain during the dry periods. This enhanced plant activity resulted in substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. March,December (primary growing season) totals of NEE were ,63, ,212, and ,233 g C m,2 in the grassland, shrubland, and woodland, respectively. Thus, there was a greater disparity between ecosystem water use and the strength of the CO2 sink as woody plants increased across the encroachment gradient. Despite a higher density of woody plants and a greater plant productivity in the woodland than in the shrubland, the woodland produced a larger respiration response to rainfall that largely offset its higher photosynthetic potential. These data suggest that the capacity for woody plants to exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody-plant abundance. These results highlight the important roles of water sources and ecosystem structure on the control of water and carbon balances in dryland areas. [source]


Strontium Isotopic Identification of Water-Rock Interaction and Ground Water Mixing

GROUND WATER, Issue 3 2004
Carol D. Frost
87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly,on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions. [source]