Home About us Contact | |||
Water Savings (water + savings)
Selected AbstractsWater savings in mature deciduous forest trees under elevated CO2GLOBAL CHANGE BIOLOGY, Issue 12 2007SEBASTIAN LEUZINGER Abstract Stomatal conductance of plants exposed to elevated CO2 is often reduced. Whether this leads to water savings in tall forest-trees under future CO2 concentrations is largely unknown but could have significant implications for climate and hydrology. We used three different sets of measurements (sap flow, soil moisture and canopy temperature) to quantify potential water savings under elevated CO2 in a ca. 35 m tall, ca. 100 years old mixed deciduous forest. Part of the forest canopy was exposed to 540 ppm CO2 during daylight hours using free air CO2 enrichment (FACE) and the Swiss Canopy Crane (SCC). Across species and a wide range of weather conditions, sap flow was reduced by 14% in trees subjected to elevated CO2, yielding ca. 10% reduction in evapotranspiration. This signal is likely to diminish as atmospheric feedback through reduced moistening of the air comes into play at landscape scale. Vapour pressure deficit (VPD)-sap flow response curves show that the CO2 effect is greatest at low VPD, and that sap flow saturation tends to occur at lower VPD in CO2 -treated trees. Matching stomatal response data, the CO2 effect was largely produced by Carpinus and Fagus, with Quercus contributing little. In line with these findings, soil moisture at 10 cm depth decreased at a slower rate under high-CO2 trees than under control trees during rainless periods, with a reversal of this trend during prolonged drought when CO2 -treated trees take advantage from initial water savings. High-resolution thermal images taken at different heights above the forest canopy did detect reduced water loss through altered energy balance only at <5 m distance (0.44 K leaf warming of CO2 -treated Fagus trees). Short discontinuations of CO2 supply during morning hours had no measurable canopy temperature effects, most likely because the stomatal effects were small compared with the aerodynamic constraints in these dense, broad-leaved canopies. Hence, on a seasonal basis, these data suggest a <10% reduction in water consumption in this type of forest when the atmosphere reaches 540% ppm CO2. [source] Upscaling water savings from farm to irrigation system level using GIS-based agro-hydrological modelling,IRRIGATION AND DRAINAGE, Issue 1 2007Shahbaz Khan simulation d'irrigation; extrapolation; efficacité d'utilisation de l'eau; économie de l'eau Abstract Irrigation continues to be the main water user on a global scale despite the increase in water use by sectors other than agriculture. More efficient water application technologies and water management practices are ways of realising potential water savings, thus moderating the negative impacts of higher water use on farm incomes and environmental impact on rivers and groundwater systems. This paper describes an integrated approach of agro-hydrological modelling for determining potential water savings achievable by adopting high-tech irrigation technologies at farm level and application of GIS techniques to upscale those benefits at the regional irrigation system level. The SWAP (Soil,Water,Atmosphere,Plant) model was used for the simulation of water use at the farm level. The results are promising, as the potential water saving ranges from 0.1 to 2.2,ML,ha,1 (10,220,mm) for different broad-acre crops, 1.0 to 2.0,ML,ha,1 (100,200,mm) in sprinkler and 2.0 to 3.0,ML,ha,1 (200,300,mm) in drip irrigation for citrus, 1.0 to 1.5,ML,ha,1 (100,150,mm) in sprinkler and up to 4.0,ML,ha,1 (400,mm) in drip irrigation for vineyards and 0.5 to 1.0,ML,ha,1 for vegetables (50,100,mm). SWAP simulations show crop water saving potential of 7% for maize, 15% for soybean, 17% for wheat, 35% for barley, 17% for sunflower and 38% for fababean from the current water use statistics in Australia. Spatial analysis in GIS environment is carried out to investigate the spatial variations of water use for a particular crop under different depths to water table and varying soil types. Maps of water need for all broad-acre crops are drawn and pixel-to-pixel comparison is performed to determine the water saving potential per unit area. The upscaling approach shows that considerable water amounts could be saved both in Murrumbidgee Irrigation Area (MIA) and Coleambally Irrigation Area (CIA) with potential water saving of 36 to 95,GL (MCM) in MIA and 42 to 72,GL (MCM) in CIA. Copyright © 2007 John Wiley & Sons, Ltd. L'irrigation reste l'usage principal de l'eau à l'échelle mondiale en dépit de l'augmentation des volumes utilisés par les secteurs autres que l'agriculture. L'amélioration des techniques d'irrigation et des procédures de gestion de l'eau permet de réaliser des économies d'eau potentielles, modérant ainsi les impacts négatifs d'une surconsommation d'eau sur les revenus agricoles et ses incidences sur l'environnement des cours d'eau et des aquifères. Cet article décrit comment un modèle agro-hydrologique intégré peut déterminer les économies d'eau réalisables grâce à l'adoption de technologies de pointe dans l'irrigation au niveau de l'exploitation agricole et à l'application des techniques de SIG à l'extension de ces avantages au niveau d'un système régional d'irrigation. Le modèle SWAP (Sol-Eau-Atmosphère-Plante) a été employé pour simuler l'utilisation de l'eau au niveau de l'exploitation. Les résultats sont prometteurs car l'économie d'eau potentielle va de 100 à 2 200 m3/ha (10 à 220 millimètres) pour différentes cultures de plein champ, de 1 000 à 2 000 m3/ha (100 à 200 millimètres) en aspersion et de 2 000 à 3 000 m3/ha (200 à 300 millimètres) en goutte à goutte sur des citronniers, de 1 000 à 1 500 m3/ha (100 à 150 millimètres) en aspersion et jusqu'à 4 000 m3/ha (400 millimètres) en goutte à goutte sur de la vigne, et de 500 à 1 000 m3/ha pour des légumes (50 à 100 millimètres). Les simulations de SWAP à partir de données statistiques australiennes courantes montrent un potentiel d'économie d'eau de 7% pour le maïs, 15% pour le soja, 17% pour le blé, 35% pour l'orge, 17% pour le tournesol et 38% pour les fèves. Une analyse par SIG permet d'étudier les variations spatiales de l'utilisation de l'eau pour une récolte particulière selon la profondeur de la nappe et le type de sol. Les besoins en eau de toutes les cultures de plein champ sont cartographiés et le potentiel d'économie d'eau par unité de surface est estimé pixel par pixel. L'extrapolation des résultats montre que des volumes d'eau considérables pourraient être économisés dans les zones irriguées de Murrumbidgee (MIA, économie potentielle de 36 à 95 millions de m3) et de Coleambally (CIA, économie potentielle de 42 à 72 m3). Copyright © 2007 John Wiley & Sons, Ltd. [source] Etude comparative de la disponibilité de l'eau en irrigation goutte à goutteIRRIGATION AND DRAINAGE, Issue 3 2001A.V. Ould Mohamed El-Hafedh goutteur; écartement; durée d'irrigation; fréquence d'arrosage Abstract Dans le but de déterminer la meilleure combinaison entre période et durée d'irrigation pour différents écartements inter-goutteurs, nous avons essayé d'analyser la disponibilité de l'eau au sein de la zone racinaire d'une culture de tomate irriguée à l'aide d'une rampe de goutteurs débitant chacun 4 l h,1. Trois écartements ont été étudiés à savoir 30, 50 et 70 cm. Lorsqu'on a pris une durée d'arrosage systématique de 4h30mn, nous avons observé à la fin des irrigations des teneurs en eau volumiques moyennes dépassant la capacité au champ pour les trois écartements. En effet, à l'examen de l'évolution des teneurs en eau au sein du bulbe, il est remarqué que la teneur en eau à la capacité au champ a été atteinte après 25 minutes, 50 minutes et deux heures respectivement pour 30, 50 et 70 cm. Mais l'humidification de toute la ligne de culture n'a été observée qu'après des temps respectifs d'une heure, deux heures et quatre heures (Ould Mohamed El-Hafedh et al., 2000). Les irrigations ont été reprises avec ces durées réduites (une heure, deux heures et quatre heures respectivement pour les écartements 30, 50 et 70 cm) en vue d'évaluer et comparer les consommations en eau de la culture sous les différents traitements. Dans le cas de l'irrigation d'une durée de 4h30mn, la période séparant deux arrosages successifs a été de cinq, quatre et trois jours respectivement pour les écartements 30, 50 et 70 cm. Pour les irrigations des durées réduites, on a constaté qu'il est impératif d'irriguer après trois jours pour les deux écartements 50 et 70 cm et après deux jours pour l'écartement 30 cm. En comparant les consommations en eau pour les durées réduites et la durée systématique de 4h30mn, on a observé une économie d'eau de l'ordre de 20, 15 et 5% respectivement pour 30, 50 et 70 cm d'écartement. D'autre part, la comparaison entre les durées réduites montre que la plus importante économie en eau a été réalisée avec 50 cm d'écartement. Copyright © 2001 John Wiley & Sons, Ltd. In order to determine the best combination between duration and frequency of drip irrigation for various inter-dripper spacing, we analysed the availability of water within the root zone of a tomato culture irrigated using lateral drippers each outputting 4 l h,1 discharge rate. Three spacings were studied, namely 30, 50 and 70 cm. Studying systematic irrigation duration of 4½ hours, we observed at the end of each irrigation average volumetric water contents exceeding the field capacity. Indeed, with the examination of the evolution of the water contents within the bulb, it is noticed that the water content at the field capacity was reached after 25 minutes, 50 minutes and 2 hours respectively for 30, 50 and 70 cm spacing. But the humidification of the whole culture line was observed only after the respective times of 1, 2 and 4 hours (Ould Mohamed El-Hafedh et al., 2000). The irrigations were taken again with these reduced durations (1, 2 and 4 hours for 30, 50 and 70 cm spacing respectively) in order to evaluate and compare water consumption of the culture under the various treatments. In case of systematic irrigation duration, the period separating two successive waterings was five, four and three days for 30, 50 and 70 cm spacing respectively. For the reduced irrigation durations, it is imperative to irrigate after three days for the 50 and 70 cm spacings and after two days for the 30 cm spacing. Comparing water consumption for the reduced durations and those of the systematic duration, we observed water savings of about 20, 15 and 5% respectively for 30, 50 and 70-cm spacing. The comparison between the reduced durations shows that the most significant water saving was obtained with the 50 cm spacing. Copyright © 2001 John Wiley & Sons, Ltd. [source] Effective Efficiency as a Tool for Sustainable Water Resources Management,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2008Naim Haie Abstract:, The sufficiency and usefulness of Effective Efficiency (EE) as a water resources index is shown through conceptual formulation of a generalized EE and practical applications. Two EE models are proposed: one is based on water quantity and the other on quantity and quality, with the possibility of considering water reuse (recycling) in both. These models were developed for two scales: the first is called Project EE and the second Basin EE. The latter gives the influence of the project on the water resources systems of the basin while the former does not make such connection to the whole basin. Such considerations give proper signals as to the adequacy of any intervention to increase efficiency. A crucial distinction is made between depletion and diversion water savings. Classical Efficiency (CE) models are analyzed and compared with the various EE models. CE results in values that are less than EE because of not considering water reuse and water quality in its calculation. Some authors, pointing to these problems , particularly the first problem , have advocated the use of hydrological "fractions" instead of efficiency concepts. This paper defends the use of a proper efficiency model such as EE and suggests putting an end to the use of the CE indicators. To test the models, they are applied to five cases of irrigation and city water use in the United States and Egypt. The analysis of the results demonstrates all the points mentioned above and the potential of the EE models to adequately describe the water resources efficiency and sustainability at a location. [source] |