Water Removal (water + removal)

Distribution by Scientific Domains


Selected Abstracts


Urban Water Systems Modelling for Water Removal and Ecological Functions William James (Ed) Practical Modeling of Urban Water Systems: Monograph 11 Computaional Hydraulics Int., Guelph, Canada, 511 pp, 2003, ISBN 0-968-36817-4

HYDROLOGICAL PROCESSES, Issue 3 2004
Theodore A. Endreny
First page of article [source]


Structure Oil-Absorption Relationships During Deep-Fat Frying

JOURNAL OF FOOD SCIENCE, Issue 9 2003
P. B OUCHON
ABSTRACT Analysis of the oil-absorption process in deep-fat fried potato cylinders (frying temperatures of 155°C, 170°C, and 185°C) allowed to distinguish 3 oil fractions: structural oil (absorbed during frying), penetrated surface oil (suctioned during cooling), and surface oil. Results showed that a small amount of oil penetrates during frying because most of the oil was picked up at the end of the process, suggesting that oil uptake and water removal are not synchronous phenomena. After cooling, oil was located either on the surface of the chip or suctioned into the porous crust microstructure, with an inverse relationship between them for increasing frying times. [source]


Polycondensation Kinetics of Lactic Acid

MACROMOLECULAR REACTION ENGINEERING, Issue 6 2007
Yogesh M. Harshe
Abstract The direct polycondensation of D,L -lactic acid in the absence and presence of different catalysts at various temperatures has been studied experimentally. Two types of reactions were carried out, one under closed conditions to estimate the equilibrium constant and the other under flow of nitrogen to estimate the polymerization rate constant. A mathematical model was developed based on a suitable kinetic scheme for polycondensation reaction accounting for the rate of water removal. The effects of different operating conditions (temperature and pressure) on the average molecular weight of the polymer have been explored through experiments and model simulations. [source]


Li4Ti5O12 Nanoparticles Prepared with Gel-hydrothermal Process as a High Performance Anode Material for Li-ion Batteries

CHINESE JOURNAL OF CHEMISTRY, Issue 6 2010
Zheng Qiu
Abstract Li4Ti5O12 (LTO) nanoparticles were prepared by gel-hydrothermal process and subsequent calcination treatment. Calcination treatment led to structural water removal, decomposition of organics and primary formation of LTO. The formation temperature of spinel LTO nanoparticles was lower than that of bulk materials counterpart prepared by solid-state reaction or by sol-gel processing. Based on the thermal gravimetric analysis (TG) and differential thermal gravimetric (DTG), samples calcined at different temperatures (350, 500 and 700°C) were characterized by X-ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), transmission electron microscopy (TEM), cyclic voltammogram and charge-discharge cycling tests. A phase transition during the calcination process was observed from the XRD patterns. And the sample calcined at 500°C had a distribution of diameters around 20 nm and exhibited large capacity and good high rate capability. The well reversible cyclic voltammetric results of both electrodes indicated enhanced electrochemical kinetics for lithium insertion. It was found that the Li4Ti5O12 anode material prepared through gel-hydrothermal process, when being cycled at 8 C, could preserve 76.6% of the capacity at 0.3 C. Meanwhile, the discharge capacity can reach up to 160.3 mAh·g,1 even after 100 cycles at 1 C, close to the theoretical capacity of 175 mAh·g,1. The gel-hydrothermal method seemed to be a promising method to synthesize LTO nanoparticles with good application in lithium ion batteries and electrochemical cells. [source]