Water Quality Monitoring (water + quality_monitoring)

Distribution by Scientific Domains


Selected Abstracts


Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics

ENVIRONMENTAL MICROBIOLOGY, Issue 10 2008
G. H. Reischer
Summary The impairment of water quality by faecal pollution is a global public health concern. Microbial source tracking methods help to identify faecal sources but the few recent quantitative microbial source tracking applications disregarded catchment hydrology and pollution dynamics. This quantitative microbial source tracking study, conducted in a large karstic spring catchment potentially influenced by humans and ruminant animals, was based on a tiered sampling approach: a 31-month water quality monitoring (Monitoring) covering seasonal hydrological dynamics and an investigation of flood events (Events) as periods of the strongest pollution. The detection of a ruminant-specific and a human-specific faecal Bacteroidetes marker by quantitative real-time PCR was complemented by standard microbiological and on-line hydrological parameters. Both quantitative microbial source tracking markers were detected in spring water during Monitoring and Events, with preponderance of the ruminant-specific marker. Applying multiparametric analysis of all data allowed linking the ruminant-specific marker to general faecal pollution indicators, especially during Events. Up to 80% of the variation of faecal indicator levels during Events could be explained by ruminant-specific marker levels proving the dominance of ruminant faecal sources in the catchment. Furthermore, soil was ruled out as a source of quantitative microbial source tracking markers. This study demonstrates the applicability of quantitative microbial source tracking methods and highlights the prerequisite of considering hydrological catchment dynamics in source tracking study design. [source]


Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA,

HYDROLOGICAL PROCESSES, Issue 20 2009
Norman E. Peters
Abstract A long-term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ,12 times annually at 21 stations, with drainage areas ranging from 3·7 to 232 km2. Eleven of the stations are real-time (RT) stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment-related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum-manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces. Published in 2009 by John Wiley & Sons, Ltd. [source]


Delineating runoff processes and critical runoff source areas in a pasture hillslope of the Ozark Highlands

HYDROLOGICAL PROCESSES, Issue 21 2008
M. D. Leh
Abstract The identification of runoff contributing areas would provide the ideal focal points for water quality monitoring and Best Management Practice (BMP) implementation. The objective of this study was to use a field-scale approach to delineate critical runoff source areas and to determine the runoff mechanisms in a pasture hillslope of the Ozark Highlands in the USA. Three adjacent hillslope plots located at the Savoy Experimental Watershed, north-west Arkansas, were bermed to isolate runoff. Each plot was equipped with paired subsurface saturation and surface runoff sensors, shallow groundwater wells, H-flumes and rain gauges to quantify runoff mechanisms and rainfall characteristics at continuous 5-minute intervals. The spatial extent of runoff source areas was determined by incorporating sensor data into a geographic information-based system and performing geostatistical computations (inverse distance weighting method). Results indicate that both infiltration excess runoff and saturation excess runoff mechanisms occur to varying extents (0,58% for infiltration excess and 0,26% for saturation excess) across the plots. Rainfall events that occurred 1,5 January 2005 are used to illustrate the spatial and temporal dynamics of the critical runoff source areas. The methodology presented can serve as a framework upon which critical runoff source areas can be identified and managed for water quality protection in other watersheds. Copyright © 2008 John Wiley & Sons, Ltd. [source]


WATER QUALITY IMPACTS AND INDICATORS OF METABOLIC ACTIVITY OF THE ZEBRA MUSSEL INVASION OF THE SENECA RIVER,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2004
Steven W. Effler
ABSTRACT: The conspicuous shifts in summertime values of common measures of water qualify that have persisted for 10 years (1993 to 2002) in the Seneca River, New York, as a result of the zebra mussel invasion are documented. Resolution of patterns in time and space is supported by water quality monitoring that extends back to the late 1970s. Patterns are evaluated to describe the stability of impacts and quantify metabolic activity of the invader. The water quality impacts that have persisted unabated for 10 years since the invasion are the most severe documented for a river in North America. Changes in summer median conditions since the invasion include: (1) a 16-fold decrease in chlorophyll concentration (Chi), (2) a 2.5-fold increase in Secchi disc transparency, (3) a 17-fold increase in soluble reactive phosphorus concentration, (4) a 3.7-fold increase in total ammonia concentration, (5) a greater than 25 percent decrease in dissolved oxygen (DO) concentration, and (6) a decrease in pH of 0.55 units. The strength of these signatures has been driven by anthropogenic influences that include upstream nutrient loading and morphometric modifications of the river, and the functioning of Cross Lake, through which the river flows. This hypereutrophic lake sustains dense zebra mussel populations and related water quality impacts in the river downstream of the lake outflow by acting as a source of veligers and suitable food for this bivalve. Evidence is presented that levels of metabolic activity of the zebra mussel in this river have been resource limited, manifested through increased consumption of Chl and DO with increased delivery of these constituents in the lake's outflow. [source]


Observations of the morphology of some known and new fragilarioid diatoms (Bacillariophyceae) from rivers in the USA

PHYCOLOGICAL RESEARCH, Issue 2 2005
Eduardo A. MoralesArticle first published online: 22 FEB 200
SUMMARY Morphological studies at the light microscopy and scanning electron microscopy levels of selected fragilarioid diatoms occurring in North American streams and lakes are presented herein. The majority of the samples studied were collected by the US Geological Survey's National Water Quality Assessment Program, which concentrates on stream water quality monitoring throughout the continental USA and Hawaii. Two new species (Staurosirella confusa Morales and Punctastriata mimetica Morales) and a new forma (Pseudostaurosiropsis geocollegarum f. triradiatum Morales) are described and two new combinations (Pseudostaurosira subsalina (Hustedt) Morales and Staurosirella olden-burgiana (Hustedt) Morales) are provided. Morphological details of an additional taxon, Staurosira construens var. binodis (Ehrenberg) Hamilton in Hamilton et al. are also presented. The taxonomic affinities of all these taxa, as well as some evolutionary aspects and ecologic characteristics, are discussed in the light of published material. [source]