Home About us Contact | |||
Water Properties (water + property)
Selected AbstractsACIDIC ELECTROLYZED WATER PROPERTIES AS AFFECTED BY PROCESSING PARAMETERS AND THEIR RESPONSE SURFACE MODELSJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 1 2004GABRIEL O. I. EZEIKE Several studies of acidic electrolyzed (EO) water demonstrated the efficacy of EO water for inactivation of different foodborne pathogens and reported on the chemical species present in EO water. This study was conducted to investigate the effect of production parameters (voltage, NaCl concentration, flow rate, and temperature) on the properties of EO water and to model the complex reactions occurring during the generation of EO water. At 0.1% salt concentration, EO water was produced at 2, 10, and 28 V. However, due to high conductivity of the electrolyte at 0.5% salt concentration, the voltage applied across the cell was limited to 7 V. The electrolyte flow rate was set at 0.5, 2.5, and 4.5 L/mn. For pH and oxidation-reduction potential (ORP), NaCl concentration was the most significant factor followed by voltage, electrolyte flow rate and temperature, respectively. However, in the case of residual chlorine, flow rate was relatively more important than voltage. Response surface methodology yielded models to predict EO water properties as functions of the process parameters studied, with very high coefficients of determination (R2= 0.872 to 0.938). In general, the higher the NaCl concentration and voltage, the higher the ORP and residual chlorine of EO water. Increased electrolyte flow rate will produce EO water with lower ORP and residual chlorine due to the shorter residence time in the electrolytic cell. [source] Southeast Alaska: oceanographic habitats and linkagesJOURNAL OF BIOGEOGRAPHY, Issue 3 2009Thomas Weingartner Abstract We provide an overview of the physical oceanographic and geological processes that affect marine biological habitats and production in the marine waters throughout the archipelago and continental shelf of Southeast Alaska. Given the paucity of regional data, our overview summarizes work done in adjacent regions of the Gulf of Alaska shelf and basin, and draws on research carried out in similar settings elsewhere. The geological setting, which critically influences the regional meteorology and oceanography, includes a narrow continental shelf, deep channels that permeate the archipelago, fjords, glaciers and a rugged, mountainous coast. The large-scale meteorology is influenced primarily by seasonal variations in the intensity and position of the Aleutian Low. Winds, freshwater runoff, tides and cross-shelf exchange control the regional oceanography. The large-scale flow field advects mass, heat, salt, nutrients and planktonic organisms northward from British Columbia (and even further south) to the northern Gulf of Alaska along the slope, shelf, and within the channels of Southeast Alaska. The deep channels permeating the island archipelago and narrow continental shelf facilitate communication between basin and interior waters. Water properties and flow fields are subject to large annual variations in response to similarly large variations in winds and coastal freshwater discharge. The complex geological setting leads to large spatial heterogeneity in the physical processes controlling the local circulation fields and mixing, thereby creating numerous and diverse marine biological habitats. These various circulation and mixing processes modify substantially Southeast Alaska water masses and thus influence marine ecosystem processes downstream over the northern and western Gulf of Alaska shelf. [source] Equations of state for basin geofluids: algorithm review and intercomparison for brinesGEOFLUIDS (ELECTRONIC), Issue 4 2002J. J. Adams ABSTRACT Physical properties of formation waters in sedimentary basins can vary by more than 25% for density and by one order of magnitude for viscosity. Density differences may enhance or retard flow driven by other mechanisms and can initiate buoyancy-driven flow. For a given driving force, the flow rate and injectivity depend on viscosity and permeability. Thus, variations in the density and viscosity of formation waters may have or had a significant effect on the flow pattern in a sedimentary basin, with consequences for various basin processes. Therefore, it is critical to correctly estimate water properties at formation conditions for proper representation and interpretation of present flow systems, and for numerical simulations of basin evolution, hydrocarbon migration, ore genesis, and fate of injected fluids in sedimentary basins. Algorithms published over the years to calculate water density and viscosity as a function of temperature, pressure and salinity are based on empirical fitting of laboratory-measured properties of predominantly NaCl solutions, but also field brines. A review and comparison of various algorithms are presented here, both in terms of applicability range and estimates of density and viscosity. The paucity of measured formation-water properties at in situ conditions hinders a definitive conclusion regarding the validity of any of these algorithms. However, the comparison indicates the versatility of the various algorithms in various ranges of conditions found in sedimentary basins. The applicability of these algorithms to the density of formation waters in the Alberta Basin is also examined using a high-quality database of 4854 water analyses. Consideration is also given to the percentage of cations that are heavier than Na in the waters. [source] ACIDIC ELECTROLYZED WATER PROPERTIES AS AFFECTED BY PROCESSING PARAMETERS AND THEIR RESPONSE SURFACE MODELSJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 1 2004GABRIEL O. I. EZEIKE Several studies of acidic electrolyzed (EO) water demonstrated the efficacy of EO water for inactivation of different foodborne pathogens and reported on the chemical species present in EO water. This study was conducted to investigate the effect of production parameters (voltage, NaCl concentration, flow rate, and temperature) on the properties of EO water and to model the complex reactions occurring during the generation of EO water. At 0.1% salt concentration, EO water was produced at 2, 10, and 28 V. However, due to high conductivity of the electrolyte at 0.5% salt concentration, the voltage applied across the cell was limited to 7 V. The electrolyte flow rate was set at 0.5, 2.5, and 4.5 L/mn. For pH and oxidation-reduction potential (ORP), NaCl concentration was the most significant factor followed by voltage, electrolyte flow rate and temperature, respectively. However, in the case of residual chlorine, flow rate was relatively more important than voltage. Response surface methodology yielded models to predict EO water properties as functions of the process parameters studied, with very high coefficients of determination (R2= 0.872 to 0.938). In general, the higher the NaCl concentration and voltage, the higher the ORP and residual chlorine of EO water. Increased electrolyte flow rate will produce EO water with lower ORP and residual chlorine due to the shorter residence time in the electrolytic cell. [source] THE TYCHOPELAGIC DIATOM, PARALIA SULCATA, AS PALEOINDICATOR SPECIES IN COASTAL MARINE ENVIRONMENTSJOURNAL OF PHYCOLOGY, Issue 2000M.R. McQuoid Paralia sulcata is a diatom commonly found in both the plankton and benthos of coastal environments. This species is heavily silicified and, thus preserves well in sedimentary records making it a potentially useful paleoindicator species. However, its tychopelagic nature and its association with a wide range of environmental conditions have made detailed paleoecological interpretations complicated. High-resolution sediment records from coastal fjords in both Canada and Sweden show variations in the abundance and morphology of P. sulcata that provide evidence of changes in benthic habitat distribution and surface water properties in the fjords on timescales of decades to centuries. These studies suggest that P. sulcata can be an important paleoindicator species when interpretations are made in the context of its complex ecology. [source] Structural and dynamic properties of water around acetylcholinesterasePROTEIN SCIENCE, Issue 9 2002Richard H. Henchman AChE, acetylcholinsterase; ARC/TAP, averaged residue coordinate/time-averaged position Abstract Structural and dynamic properties of water molecules around acetylcholinesterase are examined from a 10-nsec molecular dynamics simulation to help understand how the protein alters water properties. Water structure is broken down into hydration sites constructed from the water density <3.6 Å from the protein surface. These sites are characterized according to occupancy, number of water neighbors, hydrogen bonds, dipole moment, and residence time. The site description provides a convenient means to describe the extent and localization of these properties. Determining the network of paths that waters follow from site to site and measuring the rate of flow of waters from the sites to the bulk make it possible to quantitatively study the time scales and paths that water molecules follow as they move around the protein. [source] |