Home About us Contact | |||
Water Management Practices (water + management_practice)
Selected AbstractsUsing framing parameters to improve handling of uncertainties in water management practiceENVIRONMENTAL POLICY AND GOVERNANCE, Issue 2 2010Nicola Isendahl Abstract Management of water resources is afflicted with uncertainties. Nowadays it is facing more and new uncertainties since the pace and dimension of changes (e.g. climatic, demographic) are accelerating and are likely to increase even more in the future. Hence it is crucial to find pragmatic ways to deal with these uncertainties in water management. We argue for an analytical yet pragmatic approach to enable decision-makers to deal with uncertainties in a more explicit and systematic way and allow for better informed decisions. Our approach is based on the concept of framing, referring to the different ways in which people make sense of the world and of the uncertainties. We apply recently developed parameters of the framing of uncertainty in two sub-basins of the Rhine, the Dutch Kromme Rijn and the German Wupper. We present and discuss the results of a series of stakeholder interactions in the two basins aimed at developing strategies for improving dealing with uncertainties. The strategies are amended and synthesized in a check-list based on the uncertainty framing parameters as a hands-on tool for systematically identifying improvement options when dealing with uncertainty in water management practice. We conclude with suggestions for testing the developed check-list as a tool for decision aid in water management practice. Copyright © 2010 John Wiley & Sons, Ltd and ERP Environment. [source] Ground Water Sustainability: Methodology and Application to the North China PlainGROUND WATER, Issue 6 2008Jie Liu This article analyzes part of a ground water flow system in the North China Plain (NCP) subject to severe overexploitation and rapid depletion. A transient ground water flow model was constructed and calibrated to quantify the changes in the flow system since the predevelopment 1950s. The flow model was then used in conjunction with an optimization code to determine optimal pumping schemes that improve ground water management practices. Finally, two management scenarios, namely, urbanization and the South-to-North Water Transfer Project, were evaluated for their potential impacts on the ground water resources in the study area. Although this study focuses on the NCP, it illustrates a general modeling framework for analyzing the sustainability, or the lack thereof, of ground water flow systems driven by similar hydrogeologic and economic conditions. The numerical simulation is capable of quantifying the various components of the overall flow budget and evaluating the impacts of different management scenarios. The optimization modeling allows the determination of the maximum "sustainable pumping" that satisfies a series of prescribed constraints. It can also be used to minimize the economic costs associated with ground water development and management. Furthermore, since the NCP is one of the most water scarce and economically active regions in the world, the conclusions and insights from this study are of general interest and international significance. [source] Upscaling water savings from farm to irrigation system level using GIS-based agro-hydrological modelling,IRRIGATION AND DRAINAGE, Issue 1 2007Shahbaz Khan simulation d'irrigation; extrapolation; efficacité d'utilisation de l'eau; économie de l'eau Abstract Irrigation continues to be the main water user on a global scale despite the increase in water use by sectors other than agriculture. More efficient water application technologies and water management practices are ways of realising potential water savings, thus moderating the negative impacts of higher water use on farm incomes and environmental impact on rivers and groundwater systems. This paper describes an integrated approach of agro-hydrological modelling for determining potential water savings achievable by adopting high-tech irrigation technologies at farm level and application of GIS techniques to upscale those benefits at the regional irrigation system level. The SWAP (Soil,Water,Atmosphere,Plant) model was used for the simulation of water use at the farm level. The results are promising, as the potential water saving ranges from 0.1 to 2.2,ML,ha,1 (10,220,mm) for different broad-acre crops, 1.0 to 2.0,ML,ha,1 (100,200,mm) in sprinkler and 2.0 to 3.0,ML,ha,1 (200,300,mm) in drip irrigation for citrus, 1.0 to 1.5,ML,ha,1 (100,150,mm) in sprinkler and up to 4.0,ML,ha,1 (400,mm) in drip irrigation for vineyards and 0.5 to 1.0,ML,ha,1 for vegetables (50,100,mm). SWAP simulations show crop water saving potential of 7% for maize, 15% for soybean, 17% for wheat, 35% for barley, 17% for sunflower and 38% for fababean from the current water use statistics in Australia. Spatial analysis in GIS environment is carried out to investigate the spatial variations of water use for a particular crop under different depths to water table and varying soil types. Maps of water need for all broad-acre crops are drawn and pixel-to-pixel comparison is performed to determine the water saving potential per unit area. The upscaling approach shows that considerable water amounts could be saved both in Murrumbidgee Irrigation Area (MIA) and Coleambally Irrigation Area (CIA) with potential water saving of 36 to 95,GL (MCM) in MIA and 42 to 72,GL (MCM) in CIA. Copyright © 2007 John Wiley & Sons, Ltd. L'irrigation reste l'usage principal de l'eau à l'échelle mondiale en dépit de l'augmentation des volumes utilisés par les secteurs autres que l'agriculture. L'amélioration des techniques d'irrigation et des procédures de gestion de l'eau permet de réaliser des économies d'eau potentielles, modérant ainsi les impacts négatifs d'une surconsommation d'eau sur les revenus agricoles et ses incidences sur l'environnement des cours d'eau et des aquifères. Cet article décrit comment un modèle agro-hydrologique intégré peut déterminer les économies d'eau réalisables grâce à l'adoption de technologies de pointe dans l'irrigation au niveau de l'exploitation agricole et à l'application des techniques de SIG à l'extension de ces avantages au niveau d'un système régional d'irrigation. Le modèle SWAP (Sol-Eau-Atmosphère-Plante) a été employé pour simuler l'utilisation de l'eau au niveau de l'exploitation. Les résultats sont prometteurs car l'économie d'eau potentielle va de 100 à 2 200 m3/ha (10 à 220 millimètres) pour différentes cultures de plein champ, de 1 000 à 2 000 m3/ha (100 à 200 millimètres) en aspersion et de 2 000 à 3 000 m3/ha (200 à 300 millimètres) en goutte à goutte sur des citronniers, de 1 000 à 1 500 m3/ha (100 à 150 millimètres) en aspersion et jusqu'à 4 000 m3/ha (400 millimètres) en goutte à goutte sur de la vigne, et de 500 à 1 000 m3/ha pour des légumes (50 à 100 millimètres). Les simulations de SWAP à partir de données statistiques australiennes courantes montrent un potentiel d'économie d'eau de 7% pour le maïs, 15% pour le soja, 17% pour le blé, 35% pour l'orge, 17% pour le tournesol et 38% pour les fèves. Une analyse par SIG permet d'étudier les variations spatiales de l'utilisation de l'eau pour une récolte particulière selon la profondeur de la nappe et le type de sol. Les besoins en eau de toutes les cultures de plein champ sont cartographiés et le potentiel d'économie d'eau par unité de surface est estimé pixel par pixel. L'extrapolation des résultats montre que des volumes d'eau considérables pourraient être économisés dans les zones irriguées de Murrumbidgee (MIA, économie potentielle de 36 à 95 millions de m3) et de Coleambally (CIA, économie potentielle de 42 à 72 m3). Copyright © 2007 John Wiley & Sons, Ltd. [source] Combating drought through preparednessNATURAL RESOURCES FORUM, Issue 4 2002Donald A. Wilhite Drought is a complex, slow,onset phenomenon that affects more people than any other natural hazard and results in serious economic, social, and environmental impacts. Although drought affects virtually all climatic regimes and has significant consequences in both developed and developing countries, its impacts are especially serious in developing countries where dryland agriculture predominates. The impacts of drought are often an indicator of unsustainable land and water management practices, and drought assistance or relief provided by governments and donors encourages land managers and others to continue these practices. This often results in a greater dependence on government and a decline in self,reliance. Moving from crisis to risk management will require the adoption of a new paradigm for land managers, governments, international and regional development organizations, and non,governmental organizations. This approach emphasizes preparedness, mitigation, and improved early warning systems (EWS) over emergency response and assistance measures. Article 10 of the Convention to Combat Desertification states that national action programmes should be established to identify the factors contributing to desertification and practical measures necessary to combat desertification and mitigate the effects of drought. In the past 10 years, there has been considerable recognition by governments of the need to develop drought preparedness plans and policies to reduce the impacts of drought. Unfortunately, progress in drought preparedness during the last decade has been slow because most nations lack the institutional capacity and human and financial resources necessary to develop comprehensive drought plans and policies. Recent commitments by governments and international organizations and new drought monitoring technologies and planning and mitigation methodologies are cause for optimism. The challenge is the implementation of these new technologies and methodologies. It is critical for governments that possess this experience to share it with others through regional and global networks. One way to accomplish this goal is to create a network of regional networks on drought preparedness to expedite the adoption of drought preparedness tools to lessen the hardships associated with severe and extended drought episodes. [source] |