Water Isotopes (water + isotope)

Distribution by Scientific Domains


Selected Abstracts


Variability of Isotope and Major Ion Chemistry in the Allequash Basin, Wisconsin

GROUND WATER, Issue 7 2003
John F. Walker
As part of ongoing research conducted at one of the U.S. Geological Survey's Water, Energy, and Biogeochem-ical Budgets sites, work was undertaken to describe the spatial and temporal variability of stream and ground water isotopic composition and cation chemistry in the Trout Lake watershed, to relate the variability to the watershed flow system, and to identify the linkages of geochemical evolution and source of water in the watershed. The results are based on periodic sampling of sites at two scales along Allequash Creek, a small headwater stream in northern Wisconsin. Based on this sampling, there are distinct water isotopic and geochemical differences observed at a smaller hillslope scale and the larger Allequash Creek scale. The variability was larger than expected for this simple watershed, and is likely to be seen in more complex basins. Based on evidence from multiple isotopes and stream chemistry, the flow system arises from three main source waters (terrestrial-, lake-, or wetland-derived recharge) that can be identified along any flowpath using water isotopes together with geochemical characteristics such as iron concentrations. The ground water chemistry demonstrates considerable spatial variability that depends mainly on the flow-path length and water mobility through the aquifer. Calcium concentrations increase with increasing flowpath length, whereas strontium isotope ratios increase with increasing extent of stagnation in either the unsaturated or saturated zones as waters move from source to sink. The flowpath distribution we identify provides important constraints on the calibration of ground water flow models such as that undertaken by Pint et al. (this issue). [source]


Assessing the impact of mixing assumptions on the estimation of streamwater mean residence time

HYDROLOGICAL PROCESSES, Issue 12 2010
Fabrizio Fenicia
Abstract Catchment streamwater mean residence time (Tmr) is an important descriptor of hydrological systems, reflecting their storage and flow pathway properties. Tmr is typically inferred from the composition of stable water isotopes (oxygen-18 and deuterium) in observed rainfall and discharge. Currently, lumped parameter models based on convolution and sinewave functions are usually used for tracer simulation. These traditional models are based on simplistic assumptions that are often known to be unrealistic, in particular, steady flow conditions, linearity, complete mixing and others. However, the effect of these assumptions on Tmr estimation is seldom evaluated. In this article, we build a conceptual model that overcomes several assumptions made in traditional mixing models. Using data from the experimental Maimai catchment (New Zealand), we compare a complete-mixing (CM) model, where rainfall water is assumed to mix completely and instantaneously with the total catchment storage, with a partial-mixing (PM) model, where the tracer input is divided between an ,active' and a ,dead' storage compartment. We show that the inferred distribution of Tmr is strongly dependent on the treatment of mixing processes and flow pathways. The CM model returns estimates of Tmr that are well identifiable and are in general agreement with previous studies of the Maimai catchment. On the other hand, the PM model,motivated by a priori catchment insights,provides Tmr estimates that appear exceedingly large and highly uncertain. This suggests that water isotope composition measurements in rainfall and discharge alone may be insufficient for inferring Tmr. Given our model hypothesis, we also analysed the effect of different controls on Tmr. It was found that Tmr is controlled primarily by the storage properties of the catchment, rather than by the speed of streamflow response. This provides guidance on the type of information necessary to improve Tmr estimation. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Steady- and unsteady-state lumped parameter modelling of tritium and chlorofluorocarbons transport: hypothetical analyses and application to an alpine karst aquifer

HYDROLOGICAL PROCESSES, Issue 17 2005
N. Nur Ozyurt
Abstract Determination of a groundwater's mean residence time with the aid of environmental tracers is common in hydrogeology. Many of the lumped parameter (LP) applications used for this purpose have been based on steady-state models. However, the results may be misleading if a steady LP model is used to simulate the environmental tracer transport in an unsteady aquifer. To test this hypothesis, the results of steady and unsteady versions of several LP models were evaluated theoretically and in an alpine karst aquifer case by using tritium, oxygen-18 and chlorofluorocarbons (CFCs). The results reveal that the mean residence times obtained may be significantly different between the steady and unsteady versions of the same model. For the karst aquifer investigated, a serially connected exponential and a plug flow model were run under unsteady conditions. It is shown that outflux calibration with an unsteady model provides a firm basis in evaluating the results of models. An outflux-calibrated unsteady model predicted reasonably the observed series of water isotopes. The calibrated model's CFCs output overpredicts the observed concentrations, probably because of the time lag in the unsaturated zone of the alpine karst aquifer. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Stable water isotope simulation in different reservoirs of Manaus, Brazil, by Community Land Model incorporating stable isotopic effect

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2009
Xin-Ping Zhang
Abstract The daily and monthly variations of stable water isotopes in different reservoirs at Manaus, Brazil, are simulated and inter-compared in an equilibrium year, using the Community Land Model (CLM) involving the stable isotopic effects as a diagnostic tool for an in-depth understanding of the hydrometeorological processes. On the daily scale, the ,18O in precipitation, vapour and surface runoff have clear seasonality, with marked negative correlations with the corresponding water amount. However, the ,18O in surface dew displays marked positive correlation with dew amount. On the diurnal time scale, the ,18O in precipitation displays an unclear diurnal variation and an unmarked correlation with the precipitation amount. However, the ,18O in vapour keeps consistency with specific humidity. On the monthly time scale, the ,18O in precipitation and surface runoff displays distinct bimodal seasonality, with two maxima in January and in July, and two minima in April and in October; Vapor displays a similar bimodal pattern, two maxima appear in January and August, and two minima in April and November. The amount effect simulated on the monthly time scale has consistency with the actual survey result at the Manaus station, from 1965 to 1990, set up by International Atomic Energy Agency (IAEA)/World Meteorological Organization (WMO). In addition, the slope (7.49) and the intercept (6.25) of the simulated meteoric water line (MWL) are all smaller than those of the actual mean MWL. However, compared with the annual MWL, the simulated MWL lies within the variation range of actual MWLs. Copyright © 2008 Royal Meteorological Society [source]


Modelling advection and diffusion of water isotopologues in leaves

PLANT CELL & ENVIRONMENT, Issue 8 2007
MATTHIAS CUNTZ
ABSTRACT We described advection and diffusion of water isotopologues in leaves in the non-steady state, applied specifically to amphistomatous leaves. This explains the isotopic enrichment of leaf water from the xylem to the mesophyll, and we showed how it relates to earlier models of leaf water enrichment in non-steady state. The effective length or tortuosity factor of isotopologue movement in leaves is unknown and, therefore, is a fitted parameter in the model. We compared the advection,diffusion model to previously published data sets for Lupinus angustifolius and Eucalyptus globulus. Night-time stomatal conductance was not measured in either data set and is therefore another fitted parameter. The model compared very well with the observations of bulk mesophyll water during the whole diel cycle. It compared well with the enrichment at the evaporative sites during the day but showed some deviations at night for E. globulus. It became clear from our analysis that night-time stomatal conductance should be measured in the future and that the temperature dependence of the tracer diffusivities should be accounted for. However, varying mesophyll water volume did not seem critical for obtaining a good prediction of leaf water enrichment, at least in our data sets. In addition, observations of single diurnal cycles do not seem to constrain the effective length that relates to the tortuosity of the water path in the mesophyll. Finally, we showed when simpler models of leaf water enrichment were suitable for applications of leaf water isotopes once weighted with the appropriate gas exchange flux. We showed that taking an unsuitable leaf water enrichment model could lead to large biases when cumulated over only 1 day. [source]


Evolution of the stable water isotopic composition of the rain sampled along Sahelian squall lines,

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue S1 2010
Camille Risi
Abstract In the Tropics, the stable isotopic composition (HDO, HO) of precipitation is strongly modulated by convective activity. To better understand how convective processes impact the precipitation isotopic composition, we analyze the isotopic composition of rain collected during the passage of four squall lines over the Sahel (Niamey, Niger) in August 2006 during the African Monsoon Multidisciplinary Analysis (AMMA) campaign. The high-frequency sampling (5,10 min) of the precipitation allows us to investigate the evolution of the precipitation isotopic composition in different phases of the squall lines. Despite a large variability among the different squall lines, some robust isotopic features appear: the W shape of the ,18O evolution and the deuterium excess decrease in the first part of the stratiform zone. To understand more quantitatively how convective processes impact the precipitation isotopic composition, a simple stationary two-dimensional transport model including a representation of cloud microphysics and isotopic fractionation is developed and forced by three-dimensional winds retrieved from the Massachusetts Institute of Technology (MIT) radar on 11 August 2006. The model reproduces the robust observed features and a large sensitivity to the squall-line dynamics. This model suggests that the main controlling factors of the isotopic evolution are (1) squall-line dynamics, especially the downward advection of air at the rear of the squall lines, affecting the vapour composition and, by isotopic equilibration, the subsequent precipitation composition and (2) rain re-evaporation. This suggests that water isotopes have the potential to better constrain squall-line dynamics and rain re-evaporation, and to evaluate the representation of convective processes in numerical models. Copyright © 2009 Royal Meteorological Society [source]