Home About us Contact | |||
Water Ice (water + ice)
Selected AbstractsThe search for a cometary outbursts mechanism: a comparison of various theoriesASTRONOMISCHE NACHRICHTEN, Issue 2 2007P. Gronkowski Abstract In the paper the potential sources of energy of cometary outbursts have been reviewed. Considerations focus on four probable sources of the outbursts' energy. These are the polymerization of hydrogen cyanide HCN, impacts with the meteoroids, destruction of cometary grains in the field of strong solar wind and the transformation of amorphous water Ice into the crystalline one. The values of released energy and jumps of cometary brightness caused by these mechanisms have been discussed. A modern approach to the problem of the thermodynamical evolution of the comet nucleus which includes amorphous water ice is considered as the starting point in the discussion presented in the paper. The main characteristics of an outburst of a hypothetical comet belonging to the Jupiter family comet are calculated. The obtained results are in a good agreement with the characteristics observed during the real outbursts of comets. The main conclusion of this paper confirms a general presumption that the cometary outbursts can have different causes. However, the hypothesis concerning the amorphous water ice transformation appears to be the most probable one. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Vapor-condensed phase processes in the early solar systemMETEORITICS & PLANETARY SCIENCE, Issue 1 2010Lawrence GROSSMAN Many refractory inclusions in CM2 chondrites contain a relatively SiO2 -poor assemblage (spinel, hibonite, grossite, perovskite, corundum) that represents a high-temperature stage of condensation, and some may be pristine condensates that escaped later melting. Compact Type A and Type B refractory inclusions, consisting of spinel, melilite, perovskite, Ca-rich clinopyroxene ± anorthite, in CV3 chondrites are more SiO2 -rich and equilibrated with the solar nebular gas at a slightly lower temperature. Textures of many of these objects indicate that they underwent melting after condensation, crystallizing into the same phase assemblage as their precursors. The Ti3+/Ti4+ ratio of their pyroxene indicates that this process occurred in a gas whose oxygen fugacity () was approximately 8.5 log units below that of the iron-wüstite buffer, making them the only objects in chondrites known to have formed in a system whose composition was close to that of the sun. Relative to CI chondrites, these inclusions are uniformly enriched in a group of elements (e.g., Ca, REE, Zr, Ta, Ir) that are chemically diverse except for their high condensation temperatures in a system of solar composition. The enrichment factor, 17.5, can be interpreted to mean that these objects represent either the first 5.7 wt% of the condensable matter to condense during nebular cooling or the residue after vaporization of 94.3% of a CI chondrite precursor. The Mg and Si isotopic compositions of Types A and B inclusions are mass-fractionated by up to 10 and 4 ,/amu, respectively. When interpreted in terms of Rayleigh fractionation during evaporation of Mg and Si from the inclusions while they were molten, the isotopic compositions imply that up to 60% of the Mg and up to 25% of the Si were evaporated, and that approximately 80% of the enrichment in refractory (CaO+Al2O3) relative to more volatile (MgO+SiO2) in the average inclusion is due to initial condensation and approximately 20% due to subsequent evaporation. The mineralogical composition, including the Ti3+/Ti4+ ratio of the pyroxene, in Inti, a particle sampled from Comet Wild 2 by the Stardust spacecraft, is nearly identical to that of a Type B inclusion, indicating that comets contain not only the lowest-temperature condensates in the form of ices but the highest-temperature condensates as well. The FeO/(FeO+MgO) ratios of olivine and pyroxene in the matrix and chondrules of carbonaceous and ordinary chondrites are too high to be made in a system of solar composition, requiring s only 1 or 2 log units below iron-wüstite, more than 105 times higher than that of a solar gas. Various ways have been devised to generate cosmic gases sufficiently oxidizing to stabilize significant FeO in olivine at temperatures above those where Fe-Mg interdiffusion in olivine ceases. One is by vertical settling of dust toward the nebular midplane, enriching a region in dust relative to gas. Because dust is enriched in oxygen compared to carbon and hydrogen relative to solar composition, a higher results from total vaporization of the region, but the factor by which theoretical models have so far enriched the dust is 10 times too low. Another is by transporting icy bodies from the outer part of the nebula into the hot, inner part where vaporization of water ice occurs. Not only does this method fail to make the needed by a factor of 30,1000 but it also ignores simultaneous evaporation of carbon-bearing ices that would make the even lower. [source] The search for a cometary outbursts mechanism: a comparison of various theoriesASTRONOMISCHE NACHRICHTEN, Issue 2 2007P. Gronkowski Abstract In the paper the potential sources of energy of cometary outbursts have been reviewed. Considerations focus on four probable sources of the outbursts' energy. These are the polymerization of hydrogen cyanide HCN, impacts with the meteoroids, destruction of cometary grains in the field of strong solar wind and the transformation of amorphous water Ice into the crystalline one. The values of released energy and jumps of cometary brightness caused by these mechanisms have been discussed. A modern approach to the problem of the thermodynamical evolution of the comet nucleus which includes amorphous water ice is considered as the starting point in the discussion presented in the paper. The main characteristics of an outburst of a hypothetical comet belonging to the Jupiter family comet are calculated. The obtained results are in a good agreement with the characteristics observed during the real outbursts of comets. The main conclusion of this paper confirms a general presumption that the cometary outbursts can have different causes. However, the hypothesis concerning the amorphous water ice transformation appears to be the most probable one. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Earth-like planets: one hot and rocky, one wetASTRONOMY & GEOPHYSICS, Issue 1 2010Article first published online: 14 JAN 2010 European astronomers have found a planet like a bigger Earth, made mostly of water ice and orbiting a nearby star. It was found by detection of its transit across the face of its host star. [source] |