Water Diffusion (water + diffusion)

Distribution by Scientific Domains

Terms modified by Water Diffusion

  • water diffusion coefficient

  • Selected Abstracts


    Water diffusion in a rat glioma during ganciclovir-thymidine kinase gene therapy-induced programmed cell death in vivo: Correlation with cell density

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2004
    Piia K. Valonen MSc
    Abstract Purpose To study the characteristics of diffusion magnetic resonance imaging (MRI) contrast in a rat brain BT4C glioma during progression of ganciclovir (GCV)-thymidine kinase gene therapy-induced programmed cell death (PCD) in vivo. Materials and Methods The trace of the diffusion tensor (Dav = 1/3Trace ), T2, and spin density were determined by MRI and the apparent diffusion coefficient (ADC) of water by diffusion nuclear MR (NMR) spectroscopy using largely varying b values and diffusion times (tD) at 4.7 T. Cell count and apoptotic cells were quantified by histological means. Results Decline in cell count was strongly associated with increase in both Dav and T2. Spin density ratio between tumor and contralateral parietal cortex increased with a very similar time course as Dav and T2, indicating net water gain into the eradicating tumor. Diffusion spectroscopy showed a nonmonoexponential signal decay at all tD values ranging from 14,192 msec. During PCD, the ADC of the component yielding fast diffusion coefficient (D1), as acquired with tD , 47 msec, increased with kinetics similar to those of Dav (tD = 4.8 msec). The fractional size of D1 increased by 10% to 15% throughout the entire tD range. Apparent water residence time of the slow diffusion component, D2, shortened from a value of 38.3 ± 1.7 msec on day 0 to 33.4 ± 0.5 msec by day 8. Conclusion The present results show that reduced cell density and increased water content, leading to altered water microenvironment, are associated with increased water diffusion coefficient in eradicating gliomas as a result of PCD. J. Magn. Reson. Imaging 2004;19:389,396. © 2004 Wiley-Liss, Inc. [source]


    Water diffusion in the different microenvironments of breast cancer

    NMR IN BIOMEDICINE, Issue 4 2004
    Yael Paran
    Abstract The parameters that characterize the intricate water diffusion in tumors may serve to reveal their distinct pathology. Specifically, the application of diffusion magnetic resonance imaging (MRI) can aid in characterizing breast cancer, as well as monitoring response to therapy. We present here a non-invasive, quantitative MRI investigation, at high spatial resolution, of water diffusion in hormonal dependent MCF7 breast tumors implanted orthotopically in immunodeficient mice. Distinctive MRI protocols were designed in this study, utilizing a broad range of diffusion times and diffusion gradient strengths. Application of these protocols allowed water diffusion in the tissue extracellular and intracellular compartments to be distinguished, and the effect of restricted diffusion and water exchange on the water diffusion in these compartments to be evaluated. Pixel-by-pixel analysis yielded parametric maps of the estimated volume fraction and apparent diffusion coefficient of each compartment. The diffusion of the water in the extracellular microenvironment was approximately two fold slower than that of free water, and in the intracellular compartment was about one order of magnitude slower than that of free water and demonstrated restriction of water diffusion at long diffusion times. Mapping of the water fraction in each compartment was further employed to monitor changes during tumor progression and to assess tumor response to hormonal manipulation with a new antiestrogenic drug, tamoxifen methiodide (TMI). It was found that, in parallel to the growth arrest by this drug, the volume fraction of the slowly diffusing water increased, suggesting a TMI-induced cell swelling. This study can serve as a basis for extending diffusion breast MRI in the clinical setting. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Diffusion-Weighted Magnetic Resonance Imaging During the Aura of Pseudomigraine With Temporary Neurologic Symptoms and Lymphocytic Pleocytosis

    HEADACHE, Issue 4 2002
    Florian Gekeler MD
    A typical feature of pseudomigraine with temporary neurologic symptoms and lymphocytic pleocytosis (PMP) is the long duration of aura symptoms. To determine if these prolonged auras cause early ischemic parenchymal changes, we performed diffusion-weighted magnetic resonance imaging during the aura of a patient with PMP and found no reduction of water diffusion. [source]


    WATER DIFFUSION COEFFICIENT AND MODELING OF WATER UPTAKE IN PACKAGED YERBA MATE

    JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 4 2007
    LAURA A. RAMALLO
    ABSTRACT Effective water diffusion coefficient (Deff) was determined from the kinetics of moisture gain in a yerba mate bed. A value of 1.5 × 10,9 ± 0.4 × 10,9 m2/s was obtained at 40C and 90% relative humidity, by fitting experimental data to the series solution of Fick's second law. A model was developed to predict moisture profile and water uptake in packaged yerba mate. In order to simulate moisture gain in the packaged food, the model considers that the global process of humidity gain is controlled by combined mechanisms of package permeability, product sorption balances and water diffusion within the food bed. The explicit finite difference method was used to numerically solve the resulting equations. The validity of the model was tested by comparing predicted and experimental moisture profiles for high (WVTR , 20 g/m2/day) and low (WVTR , 400 g/m2/day) barrier packages. The model was found to adequately predict the profile of moisture content. [source]


    Mathematical modeling of water uptake through diffusion in 3D inhomogeneous swelling substrates

    AICHE JOURNAL, Issue 7 2009
    L. R. van den Doel
    Abstract Diffusion-driven water uptake in a substrate (imbibition) is a subject of great interest in the field of food technology. This is a particular challenge for rice grains that are preprocessed to accelerate the water uptake, i.e., to reduce the cooking time. Rice preprocessing disrupts the mesostructural order of starch and induces a microporous structure in the grains. The meso- and microstructural length scales have not been considered in joint approach until now. The (re)hydration of rice grains can be modeled by free (concentration-driven) diffusion or by water demand-driven diffusion. The latter is driven by the ceiling moisture content related to the extent of gelatinization of the rice substrate network. This network can be regarded as a fractal structure. As the spatial resolution of our models is limited, we choose to model the apparent water transport by a set of coupled partial differential equations (PDEs). Current models of water uptake are often limited to a single dimension, and the swelling of the substrate is not taken into account. In this article, we derive a set of PDEs to model water uptake in a three-dimensional (3D) inhomogeneous substrate for different types of water diffusion as well as the swelling of the substrate during water uptake. We will present simulation results for different 3D (macroscopic) structures and diffusion models and compare these results, qualitatively, with the experimental results acquired from magnetic resonance imaging. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


    Astrocytic hypertrophy in dysmyelination influences the diffusion anisotropy of white matter

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2007
    Laura A. Harsan
    Abstract The effect of a proteolipid protein (PLP) mutation on the developing white matter anisotropy was examined by diffusion tensor magnetic resonance imaging (DT-MRI) in a noninvasive study of a mouse model of Pelizaeus-Merzbacher disease (PMD). The jimpy PLP mutation in mice produces an irreversible dysmyelination in jimpy males, whereas heterozygous females exhibit a transient hypomyelination, as assessed by a longitudinal study of the same mice during development. Modifications of the different individual DT-MRI parameters were highlighted by specific changes in tissue structures caused by the mutation that includes the hypomyelination, axonal abnormalities, and recovery. Astrocytic hypertrophy is a striking cellular event in dysmyelinated jimpy brain, where most axons or bundles of fibers are entirely wrapped by astrocyte cytoplasmic processes, so its influences on DT-MRI parameters in dysmyelination were examined for the first time. DT-MRI data of the jimpy brain were compared with those obtained from dysmyelination of (oligo-TTK) transgenic mice, induced by oligodendrocyte killing, which have a mild astrocyte hypertrophy (Jalabi et al., 2005), and from recovering jimpy females, which have reduced astrocyte hypertrophy. The unique morphological feature of astrocytes in jimpy males coupled with an increase in the water channel protein aquaporin 4 (AQP4) was found to facilitate the directional water diffusion in the white matter. In addition to the major changes of DT-MRI parameters in the two dysmyelinated mice caused by the myelin loss and axonal modifications, the amplified magnitude of radial and axial diffusions in jimpy males was attributed principally to the strongly pronounced astrocyte hypertrophy. © 2007 Wiley-Liss, Inc. [source]


    Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia

    MAGNETIC RESONANCE IN MEDICINE, Issue 4 2007
    Kimmo T. Jokivarsi
    Abstract The amide proton transfer ratio (APTR) from the asymmetry of the Z -spectrum was determined in rat brain tissue during and after unilateral middle cerebral artery occlusion (MCAo). Cerebral lactate (Lac) as determined by 1H NMR spectroscopy, water diffusion, and T1, were quantified as well. Lac concentrations were used to estimate intracellular pH (pHi) in the brain during the MCA occlusion. A decrease in APTR during occlusion indicated acidification from 7.1 to 6.79 ± 0.19 (a drop by 0.3 ± 0.2 pH units), whereas pHi computed from Lac concentration was 6.3 ± 0.2 (a drop by 0.8 ± 0.2 pH units). Despite the disagreement between the two methods in terms of the size of the change in the absolute pHi during ischemia, ,APTR and pHi (and Lac concentration) displayed a strong correlation during the MCAo. Diffusion and T1, indicated cytotoxic edema following MCA occlusion; however, APTR returned slowly toward the values determined in the contralateral hemisphere post-ischemia. These data argue that the APTR during ischemia is affected not only by pHi but by other physicochemical factors as well, and indicates different aspects of pathology in the post-ischemic brain compared to those that influence water diffusion and T1,. Magn Reson Med 57:647,653, 2007. © 2007 Wiley-Liss, Inc. [source]


    Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients,

    MAGNETIC RESONANCE IN MEDICINE, Issue 2 2006
    Kevin M. Bennett
    Abstract The , diffusion-weighted imaging (DWI) method was developed to study heterogeneous water diffusion in the human brain using magnetic resonance imaging (MRI). An advantage of this model is that it does not require an assumption about the shape of the intravoxel distribution of apparent diffusion rates, and it has a calculable relationship to this distribution. The ,- DWI technique is useful for detecting microstructural tissue changes associated with brain tumor invasion, and may be useful for directing therapy to invading tumor cells. In previous work, ,- DWI was performed with magnetic field gradients applied along a single direction in order to avoid artificially introducing a source of heterogeneity to the decay. However, it is known that restricted diffusion is anisotropic in the brain, and the ,- DWI method must take this into account to be complete. In this work the relationship between the applied magnetic field gradients and the fitted stretched-exponential model parameters was studied in the human brain. It was found the distributed diffusion coefficient (DDC) varies with the direction of applied gradients, while the heterogeneity index , is relatively direction-insensitive. It is proposed that in clinical use, maps of , can be created using diffusion-weighting gradients applied in a single direction that reflect the tissue heterogeneity. Magn Reson Med, 2006. Published 2006 Wiley-Liss, Inc. [source]


    Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease

    MAGNETIC RESONANCE IN MEDICINE, Issue 6 2001
    Chris A. Clark
    Abstract The diffusion time dependence of the brain water diffusion tensor provides information regarding diffusion restriction and hindrance but has received little attention, primarily due to limitations in gradient amplitude available on clinical MRI systems, required to achieve short diffusion times. Using new, more powerful gradient hardware, the diffusion time dependence of tensor-derived metrics were studied in human brain in the range 8,80 ms, which encompasses the shortest diffusion times studied to date. There was no evidence for a change in mean diffusivity, fractional anisotropy, or in the eigenvalues with diffusion time in healthy human brain. The findings are consistent with a model of unrestricted, but hindered water diffusion with semipermeable membranes, likely originating from the extracellular space in which the average extracellular separation is less than 7 microns. Similar findings in two multiple sclerosis plaques indicated that the size of the water diffusion space in the lesion did not exceed this dimension. Magn Reson Med 45:1126,1129, 2001. © 2001 Wiley-Liss, Inc. [source]


    Erratum: Quantification of water diffusion and relaxation times of human U87 tumors in a mouse model

    NMR IN BIOMEDICINE, Issue 2 2010
    Yanping Sun
    This paper (DOI: 10.1002/nbm.894) was published online on 22 September 2004 and was included in the October issue of that year (Vol. 17, no. 6, pp. 399,404). An error in the text has recently been discovered. The Experimental section on p. 400 should read as follows: For intracranial implantation, 1,×,105 U87 cells suspended in 10,µl of sterile phosphate-buffered saline (PBS) were injected into the right frontal hemisphere (3,mm anterior to the Bregma, 2,mm from the midline, and 3,mm deep) of all animals using a stereotactic fixation device (Stoelting, Wood Dale, IL, USA). [source]


    Longitudinal diffusion tensor imaging in a rat brain glioma model

    NMR IN BIOMEDICINE, Issue 8 2008
    Silvia Lope-Piedrafita
    Abstract In order to investigate the properties of water motion within and around brain tumors as a function of tumor growth, longitudinal diffusion tensor imaging (DTI) was carried out in a rat brain glioma (C6) model. As tumors grew in size, significant anisotropy of water diffusion was seen both within and around the tumor. The tissue water surrounding the tumor exhibited high planar anisotropy, as opposed to the linear anisotropy normally seen in white matter, indicating that cells were experiencing stress in a direction normal to the tumor border. When tumors were sufficiently large, significant anisotropy was also seen within the tumor because of longer-range organization of cancer cells within the tumor borders. These findings have important implications for diffusion-weighted MRI experiments examining tumor growth and response to therapy. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Water diffusion in the different microenvironments of breast cancer

    NMR IN BIOMEDICINE, Issue 4 2004
    Yael Paran
    Abstract The parameters that characterize the intricate water diffusion in tumors may serve to reveal their distinct pathology. Specifically, the application of diffusion magnetic resonance imaging (MRI) can aid in characterizing breast cancer, as well as monitoring response to therapy. We present here a non-invasive, quantitative MRI investigation, at high spatial resolution, of water diffusion in hormonal dependent MCF7 breast tumors implanted orthotopically in immunodeficient mice. Distinctive MRI protocols were designed in this study, utilizing a broad range of diffusion times and diffusion gradient strengths. Application of these protocols allowed water diffusion in the tissue extracellular and intracellular compartments to be distinguished, and the effect of restricted diffusion and water exchange on the water diffusion in these compartments to be evaluated. Pixel-by-pixel analysis yielded parametric maps of the estimated volume fraction and apparent diffusion coefficient of each compartment. The diffusion of the water in the extracellular microenvironment was approximately two fold slower than that of free water, and in the intracellular compartment was about one order of magnitude slower than that of free water and demonstrated restriction of water diffusion at long diffusion times. Mapping of the water fraction in each compartment was further employed to monitor changes during tumor progression and to assess tumor response to hormonal manipulation with a new antiestrogenic drug, tamoxifen methiodide (TMI). It was found that, in parallel to the growth arrest by this drug, the volume fraction of the slowly diffusing water increased, suggesting a TMI-induced cell swelling. This study can serve as a basis for extending diffusion breast MRI in the clinical setting. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    The basis of anisotropic water diffusion in the nervous system , a technical review

    NMR IN BIOMEDICINE, Issue 7-8 2002
    Christian Beaulieu
    Abstract Anisotropic water diffusion in neural fibres such as nerve, white matter in spinal cord, or white matter in brain forms the basis for the utilization of diffusion tensor imaging (DTI) to track fibre pathways. The fact that water diffusion is sensitive to the underlying tissue microstructure provides a unique method of assessing the orientation and integrity of these neural fibres, which may be useful in assessing a number of neurological disorders. The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres. The emphasis of the review will be on model neurological systems both in vitro and in vivo. A systematic discussion of the possible sources of anisotropy and their evaluation will be presented followed by an overview of various studies of restricted diffusion and compartmentation as they relate to anisotropy. Pertinent pathological models, developmental studies and theoretical analyses provide further insight into the basis of anisotropic diffusion and its potential utility in the nervous system. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Monitoring cytotoxic tumour treatment response by diffusion magnetic resonance imaging and proton spectroscopy

    NMR IN BIOMEDICINE, Issue 1 2002
    Risto A. Kauppinen
    Abstract Exposure of tumours to anti-cancer drugs, gene or radiation therapy consistently leads to an increase in water diffusion in the cases expressing favourable treatment response. The diffusion change coincides cytotoxic cell eradication and precedes volume reduction in drug or gene therapy-treated experimental tumours. Interestingly, the recent studies from human brain tumour patients undergoing chemotherapy show similar behaviour of diffusion, suggesting important application for MRI in patient management. In this review observations from diffusion MRI and MRS in the tumours during cytotoxic treatment are summarized and the cellular mechanisms affecting molecular mobility are discussed in the light of tissue microenvironmental and microdynamic changes. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Impact damage detection and degradation monitoring of wet GFRP composites using noncontact ultrasonics

    POLYMER COMPOSITES, Issue 8 2009
    K. Berketis
    Two different non-crimp glass fabrics with a polyester resin were used to produce laminated plates that were subjected to low velocity impact testing using three impact energy levels. The plates were immersed in water at 65°C for up to 24 months. The effectiveness of a traditional water coupled and an air-coupled ultrasonic C-Scan system was assessed in terms of damage size evaluation at various time intervals. The conditioned impacted plates were retested statically in compression to determine the residual strength for evaluation of damage tolerance. Weight change measurements revealed an initial increase due to water diffusion, followed by an extended decrease due to matrix dissolution at long-term immersion times. The use of water coupled pulse-echo ultrasonics proved ineffective after long-term water immersion as damaged areas became ultrasound-invisible. The contrast between impact damaged areas and water diffused areas was restored with the air-coupled C-scan. The macroscopic damage size was not affected by the long-term water immersion and the overall weight change while the residual compression strength was seemed to be dependent on the time of immersion and the size of the pre-existing impact damage. Calibrating the air-coupled system to a dry condition specimen, a good qualitative and quantitative indication of the degraded state of water immersed plates was obtained. This monitoring system for the degradation process seems to be very promising. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]


    Transport Processes at ,-Quartz,Water Interfaces: Insights from First-Principles Molecular Dynamics Simulations

    CHEMPHYSCHEM, Issue 7 2008
    Waheed A. Adeagbo Dr.
    Abstract Car,Parrinello molecular dynamics (CP,MD) simulations are performed at high temperature and pressure to investigate chemical interactions and transport processes at the ,-quartz,water interface. The model system initially consists of a periodically repeated quartz slab with O-terminated and Si-terminated (1000) surfaces sandwiching a film of liquid water. At a temperature of 1000 K and a pressure of 0.3 GPa, dissociation of H2O molecules into H+ and OH, is observed at the Si-terminated surface. The OH, fragments immediately bind chemically to the Si-terminated surface while Grotthus-type proton diffusion through the water film leads to protonation of the O-terminated surface. Eventually, both surfaces are fully hydroxylated and no further chemical reactions are observed. Due to the confinement between the two hydroxylated quartz surfaces, water diffusion is reduced by about one third in comparison to bulk water. Diffusion properties of dissolved SiO2 present as Si(OH)4 in the water film are also studied. We do not observe strong interactions between the hydroxylated quartz surfaces and the Si(OH)4 molecule as would have been indicated by a substantial lowering of the Si(OH)4 diffusion coefficient along the surface. No spontaneous dissolution of quartz is observed. To study the mechanism of dissolution, constrained CP,MD simulations are done. The associated free energy profile is calculated by thermodynamic integration along the reaction coordinate. Dissolution is a stepwise process in which two SiO bonds are successively broken. Each bond breaking between a silicon atom at the surface and an oxygen atom belonging to the quartz lattice is accompanied by the formation of a new SiO bond between the silicon atom and a water molecule. The latter loses a proton in the process which eventually leads to protonation of the oxygen atom in the cleaved quartz SiO bond. The final solute species is Si(OH)4. [source]