Home About us Contact | |||
Water Depth (water + depth)
Kinds of Water Depth Selected AbstractsOntogenetic Microhabitat Shifts in the Bullhead, Cottus gobio L.,in a Fast Flowing StreamINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2005Milène Legalle Abstract We investigated differences in microhabitat preference curves for bullheads, Cottus gobio L., of different size-classes during low flow periods, and evaluated the influence of such differences on habitat use through Weighted Usable Area (WUA) predictions in relation to river flow in a piedmont stream in Southwest France. Water depth, current velocity, and substratum composition were used to calculate proportional use values for each size-class (SC), and to quantify size-specific microhabitat preferences. Bullhead used non-cohesive and coarse mineral particles (pebbles, cobbles, boulders), but there was a spatial segregation of individuals from different size classes (SC1,SC4). Smaller bullhead (SC1, total length <60 mm) took refuge under cobbles, significantly preferred shallower areas, and were less prone to select high current velocities than larger bullhead (SC 2 to 4, >60 mm), the latter occurring below (or under) the largest particles, where current velocity is weakened and sand accumulates. SC1 bullhead had a more restricted range for each habitat descriptors, and were thus likely to require a more specific habitat type than other bullhead. The maximum WUA values and the related preferred discharges (0.15,0.75 m3 s,1) depended on the considered size-class. Our results suggest that ontogenetic niche shifts may play a role in the structure and dynamics of populations, by adjusting species' requirements to the spatial and temporal dynamics of environmental conditions, including abiotic and biotic conditions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Microhabitat use and preferences of the endangered Cottus gobio in the River Voer, BelgiumJOURNAL OF FISH BIOLOGY, Issue 4 2005C. Van Liefferinge Microhabitat use and preferences of juvenile and adult bullhead Cottus gobio, from the River Voer, Flanders, were studied and compared across different seasons. Water depth, water velocity near the substratum, surface water velocity and substratum type used by C. gobio differed between seasons. These differences, however, were not attributable to differences in microhabitat availability. Adults appeared to prefer higher water velocities and coarser substrata than the average ones available in the basin. Although water depth appeared to have little influence on seasonal variation of microhabitat use in adult C. gobio, juveniles preferred deeper water and coarser substrata in winter, whereas in summer they appeared to use shallower water. There was a difference in microhabitat use between juvenile and adult bullhead only in summer. [source] Denil fishway utilization patterns and passage of several warmwater species relative to seasonal, thermal and hydraulic dynamicsECOLOGY OF FRESHWATER FISH, Issue 4 2001C. M. Bunt Abstract , Two different Denil fishways on the Grand River, Ontario, were used as check-points to evaluate the upstream movement of fishes past a low-head weir and to examine the proportions and inferred swimming performance of non-salmonid warmwater fishes that used each fishway type. Traps installed at fishway exits were used to collect fish during 24-hour sampling periods, over 40,51 days each year, from 1995 to 1997. Passage rates, size selectivity, water temperature, water velocity and turbidity for the periods of maximum passage for each year were examined. General species composition from trap samples shifted from catostomids to cyprinids to ictalurids to percids and centrarchids, with some overlap, as water temperatures increased from 8 °C to 25 °C in the spring and early summer. Water depths, and therefore water velocities in each fishway, were independent of river discharge due to variable accumulations of debris on upstream trash-racks. Relationships between the water velocity and the swimming and position-holding abilities of several species emerged. Turbidity was directly related to river discharge and precipitation events, and many species demonstrated maximum fishway use during periods of increased turbidity. This study 1) provided evidence of strongly directional upstream movements among several species that were previously considered non-migratory and 2) describes physical and hydraulic conditions during fishway use for 29 non-salmonid fish species., [source] Use of GIS to predict effects of water level on the spawning area for smelt, Retropinna retropinna, in Lake Taupo, New ZealandFISHERIES MANAGEMENT & ECOLOGY, Issue 4 2002D. K. ROWE A GIS model of the littoral bathymetry and substrate composition of Lake Taupo was created using ArcInfo. Littoral substrates were mapped by aerial photography and confirmed by ground-truthing. Water depths were determined by echosounding linked to a differential GPS. These data were imported into ArcInfo where a 3D GIS model was used to calculate the total area of smelt, Retropinna retropinna Richardson, spawning habitat (i.e. clean sand between depths of 0.5,2.5 m) at each of five lake levels. There was little change in area over the first 50 cm below the natural maximum lake level, but spawning habitat decreased rapidly over the next 1.4 m such that a 30% reduction occurred at the natural minimum level. Anecdotal information on inter-annual variations in lake level and smelt abundance supported the notion that high lake levels in spring result in high recruitment of smelt. The GIS model also predicted effects of lake level change on areas of macrophyte cover and on other littoral substrates, and could be used to assess effects of lake level changes on the habitats of other biota. [source] Using multi-scale species distribution data to infer drivers of biological invasion in riparian wetlandsDIVERSITY AND DISTRIBUTIONS, Issue 1 2010Jane A. Catford Abstract Aim, Biological invasion is a major conservation problem that is of interest to ecological science. Understanding mechanisms of invasion is a high priority, heightened by the management imperative of acting quickly after species introduction. While information about invading species' ecology is often unavailable, species distribution data can be collected near the onset of invasion. By examining distribution patterns of exotic and native plant species at multiple spatial scales, we aim to identify the scale (of those studied) that accounts for most variability in exotic species abundance, and infer likely drivers of invasion. Location, River Murray wetlands, south-eastern Australia. Methods, A nested, crossed survey design was used to determine the extent of variation in wetland plant abundance, grazing intensity and water depth at four spatial scales (reaches, wetland clumps, wetlands, wetland sections), and among three Depth-strata. We examined responses of exotic and native species groups (grouped into terrestrial and amphibious taxa), native weeds and 10 individual species using hierarchical ANOVA. Results, As a group dominated by terrestrial taxa, exotic species cover varied at reach-, wetland- and section-scales. This likely reflects differences in abiotic characteristics and propagule pressure at these scales. Groups based on native species did not vary at any scale examined. Cover of 10 species mostly varied among and within wetlands (patterns unrelated to species' origin or functional group), but species' responses differed, despite individual plants being similar in size. While flora mostly varied among wetlands, exotic cover varied most among reaches (26%), which was attributed to hydrological modification and human activities. Main conclusions, Multi-scale surveys can rapidly identify factors likely to affect species' distributions and can indicate where future research should be directed. By highlighting disproportionate variation in exotic cover among reaches, this study suggests that flow regulation and human-mediated dispersal facilitate exotic plant invasion in River Murray wetlands. [source] The micro-topography of the wetlands of the Okavango Delta, BotswanaEARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2005T. Gumbricht Abstract The surface of the 40 000 km2 Okavango alluvial fan is remarkably smooth, and almost everywhere lies within two to three metres of a perfectly smooth theoretical surface. Deviations from this perfect surface give rise to islands in the Okavango wetlands. This micro-topography was mapped by assigning empirical elevations to remotely sensed vegetation community classes, based on the observation that vegetation is very sensitive to small, local differences in elevation. Even though empirical, the method produces fairly accurate results. The technique allows estimation of depths of inundation and therefore will be applicable even when high resolution radar altimetry becomes available. The micro-topography has arisen as a result of clastic sedimentation in distributary channels, which produces local relief of less than two metres, and more importantly as a result of chemical precipitation in island soils, which produces similar local relief. The micro-topography is, therefore, an expression of the non-random sedimentation taking place on the fan. Volume calculations of islands extracted from the micro-topography, combined with estimates of current sediment in,ux, suggest that the land surface of the wetland may only be a few tens of thousands of years old. Constant switching of water distribution, driven by local aggradation, has distributed sediment widely. Mass balance calculations suggest that over a period of c. 150 000 years all of the fan would at one time or other have been inundated, and thus subject to sedimentation. Coalescing of islands over time results in net aggradation of the fan surface. The amount of vertical aggradation on islands and in channels is restricted by the water depth. Restricted vertical relief, in turn, maximizes the distribution of water, limiting its average depth. Aggradation in the permanent swamps occurs predominantly by clastic sedimentation. Rates of aggradation here are very similar to those in the seasonal swamps, maintaining the overall gradient, possibly because of the operation of a feedback loop between the two. The limited amount of local aggradation arising from both clastic and chemical sedimentation, combined with constant changes in water distribution, has resulted in a near-perfect conical surface over the fan. In addition to providing information on sedimentary processes, the micro-topography has several useful hydrological applications. Copyright © 2004 John Wiley & Sons, Ltd. [source] Spatial distribution and environmental correlates of Australian snubfin and Indo-Pacific humpback dolphinsECOGRAPHY, Issue 3 2006Guido J. Parra We present data on the spatial distribution of Australian snubfin and humpback dolphins using boat-based line transect surveys in three adjacent bays located in the Far Northern Section of the Great Barrier Reef Marine Park, northeast Queensland. We used Geographic Information Systems (GIS), and both randomization and Mantel tests to examine the relationship between the spatial distribution of the dolphins and three simple, readily quantified, environmental variables: distance to land, distance to river mouth, and water depth. Mantel tests allowed us to make clear inferences about the correlation of the species' distributions with environmental variables, while taking into account spatial autocorrelation and intercorrelation among variables. Randomization tests indicated snubfin and humpback dolphins occur closer to land than would be expected at random. Two-sample randomization tests indicated snubfin dolphins were found closer to river mouths than were humpback dolphins. Taking spatial autocorrelation into account, Mantel tests indicated all environmental variables were correlated with the spatial distribution of snubfin and humpback dolphins. Interspecific differences in spatial distribution appeared to be related to proximity to river mouths. Preference by snubfin and humpback dolphins for nearshore, estuarine waters is likely related to the productivity of these tropical coastal areas. This spatial analysis suggests that existing protected areas in this region may not include the most critical habitats for snubfin and humpback dolphins. The techniques used here shown relationships between the spatial distribution of the dolphins and environmental features that should facilitate their management and conservation. [source] Wide-area estimates of saltcedar (Tamarix spp.) evapotranspiration on the lower Colorado River measured by heat balance and remote sensing methods,,ECOHYDROLOGY, Issue 1 2009Pamela L. Nagler Abstract In many places along the lower Colorado River, saltcedar (Tamarix spp) has replaced the native shrubs and trees, including arrowweed, mesquite, cottonwood and willows. Some have advocated that by removing saltcedar, we could save water and create environments more favourable to these native species. To test these assumptions we compared sap flux measurements of water used by native species in contrast to saltcedar, and compared soil salinity, ground water depth and soil moisture across a gradient of 200,1500 m from the river's edge on a floodplain terrace at Cibola National Wildlife Refuge (CNWR). We found that the fraction of land covered (fc) with vegetation in 2005,2007 was similar to that occupied by native vegetation in 1938 using satellite-derived estimates and reprocessed aerial photographs scaled to comparable spatial resolutions (3,4 m). We converted fc to estimates of leaf area index (LAI) through point sampling and destructive analyses (r2 = 0·82). Saltcedar LAI averaged 2·54 with an fc of 0·80, and reached a maximum of 3·7 with an fc of 0·95. The ranges in fc and LAI are similar to those reported for native vegetation elsewhere and from the 1938 photographs over the study site. On-site measurements of water use and soil and aquifer properties confirmed that although saltcedar grows in areas where salinity has increased much better than native shrubs and trees, rates of transpiration are similar. Annual water use over CNWR was about 1·15 m year,1. Copyright © 2008 John Wiley & Sons, Ltd. [source] Breeding habitat use and the future management of the critically endangered Southern Corroboree FrogECOLOGICAL MANAGEMENT & RESTORATION, Issue 2009David Hunter Summary The Southern Corroboree Frog (Pseudophryne corroboree) is one of Australia's most critically endangered frog species. The species occurs entirely within Kosciuszko National Park, which has a history of cattle grazing (up to the 1970s). A consequence of cattle grazing has been a significant reduction in the extent of montane and sub-alpine peat-bog systems that the species uses as breeding habitat. Furthermore, climate change and associated increased wildfire frequency is expected to further reduce the extent and quality of peat bogs throughout the Australian Alps. In this study, we investigated habitat selection for breeding pools and nest sites within peat-bog systems in order to inform the conservation management of the species and guide other management practices being undertaken in peat bogs where this species occurs. Occupancy of breeding males at bog pools was found to be positively associated with increasing pool area, water depth and mid-day temperature, and negatively associated with extent of bare substrate. The majority of breeding pools identified were ephemeral. Nest sites within vegetation where males call and where females deposit their eggs were located at mid-elevations in a range of vegetation types, with the majority of nests being within moss and sedge dominated by Sphagnum cristatum and Empodisma minor. We also found that male nest sites were not randomly distributed within the edges of pools, but were more often located in areas of loose vegetation. These results highlight the potential sensitivity of the Southern Corroboree Frog to predicted changes in peat-bog systems resulting from climate change such as earlier drying and a possible reduction in the size of bog pools. A monitoring programme focused on key features of the breeding habitat should be undertaken to provide a basis for developing and assessing management actions implemented in peat bogs occupied by this species. [source] Habitat characteristics at bluegill spawning colonies in a South Dakota glacial lakeECOLOGY OF FRESHWATER FISH, Issue 4 2006N. J. C. Gosch Abstract,,, Bluegill (Lepomis macrochirus) primarily reproduce in spawning colonies. We assessed habitat characteristics at 15 bluegill spawning colonies in a South Dakota glacial lake. Nesting sites were visually identified and angling was used to verify the species of nesting fish. Habitat characteristics were measured at each nesting site and compared with those measured at 75 randomly selected sites. In Lake Cochrane, mean water depth of spawning colonies was 1.0 m. Of the 13 habitat characteristics measured, four (substrate type, substrate firmness, vegetation density and dissolved oxygen levels) were significantly different (P , 0.05) between nesting and random sites. Every bluegill nest site contained gravel substrate, despite the availability of muck, sand and rock. Substrate firmness was indexed at 0-cm penetration and vegetation density was low at all nesting sites. Additionally, bluegills selected nesting locations with relatively moderate dissolved oxygen levels. Lake Cochrane bluegill nest sites consisted of shallow, gravel areas with short, low-density, live submergent Chara vegetation. [source] A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black SeaENVIRONMENTAL MICROBIOLOGY, Issue 8 2008Martin Krüger Summary A novel microbially diverse type of 1- to 5-cm-thick mat performing anaerobic oxidation of methane (AOM) and covering several square metres of the seafloor was discovered in the Black Sea at 180 m water depth. Contrary to other AOM-mat systems of the Black Sea these floating mats are not associated to free gas and are not stabilized by authigenic carbonates. However, supply of methane is ensured by the horizontal orientation of the mats acting as a cover of methane enriched fluids ascending from the underlying sediments. Thorough investigation of their community composition by molecular microbiology and lipid biomarkers, metabolic activities and elemental composition showed that the mats provide a clearly structured system with extracellular polymeric substances (EPS) building the framework of the mats. The top black zone, showing high rates of AOM (15 ,mol gdw,1 day,1), was dominated by ANME-2, while the following equally active pink layer was dominated by ANME-1 Archaea. The lowest AOM activity (2 ,mol gdw,1 day,1) and cell numbers were found in the greyish middle part delimited towards the sediment by a second pink, ANME-1-dominated and sometimes a black outer layer (ANME-2). Our work clearly shows that the different microbial populations are established along defined chemical gradients such as methane, sulfate or sulfide. [source] A field validation of two sediment-amphipod toxicity testsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2002Steven P. Perraro Abstract A field validation study of two sediment-amphipod toxicity tests was conducted using sediment samples collected subtidally in the vicinity of a polycyclic aromatic hydrocarbon (PAH)-contaminated Superfund site in Elliott Bay (WA, USA). Sediment samples were collected at 30 stations with a 0.1 m2 grab from which subsamples were taken for sediment toxicity testing and geochemical and macrofaunal analyses. Standard 10-d sediment-amphipod toxicity tests were conducted with Rhepoxynius abronius and Leptocheirus plumulosus. Sediments were analyzed for 33 PAHs, pentachlorophenol, polychlorinated biphenyls, acid-volatile sulfide, simultaneously extracted metals (Cd, Cu, Zn, Pb, Ni), total organic carbon, and grain size. Sediment temperature, oxygen-reduction potential, water depth, and interstitial water salinity were also measured. Polycyclic aromatic hydrocarbons, quantified as total PAH toxic units (TUPAH), were confirmed to be an important common causal agent of the changes in the two toxicity test (% survival R. abronius, % survival L. plumulosus) and five macrofaunal community (number of species, S; numerical abundance, A; total biomass, B; Swartz's dominance index, SDI; Brillouin's index, H) endpoints. Two other macrofaunal community metrics (the complement of Simpson's index, 1 , SI, and McIntosh's index, MI) were less sensitive to TUPAH than the two toxicity test endpoints. The sensitivities of R. abronius and L. plumulosus to TUPAH were statistically indistinguishable. Field validations were conducted by testing the association between or among each toxicity test endpoint, each of seven macrofaunal community metrics (S, A, B, SDI, H, 1 , SI, MI), and TUPAH by (1) Spearman's coefficient of rank correlation, (2) Kendall's coefficient of concordance, (3) G tests of independence, and (4) regression analysis. Some field validations based on multivariable tests of association (e.g., points 2 and 3) among toxicity test, field, and stressor endpoints produced false positive results. Both toxicity test endpoints were validated as indicators of changes in S, A, SDI, and H by all the methods tested. The resolution power of the relationships between the laboratory toxicity test and macrofaunal field endpoints was low (, three classes) but sufficient to discriminate ecologically important effects. We conclude that standard sediment-amphipod toxicity tests are ecologically relevant and that, under the proper conditions, their results can be used for lab-to-field extrapolation. [source] Mapping sea bird densities over the North Sea: spatially aggregated estimates and temporal changesENVIRONMETRICS, Issue 6 2005Edzer J. Pebesma Abstract In the Dutch sector of the North Sea, sea bird densities are recorded bi-monthly by using airborne strip-transect monitoring. From these data we try to estimate: (i) high-resolution spatial patterns of sea bird densities; (ii) low-resolution spatial-average bird densities for large areas; and (iii) temporal changes in (i) and (ii), using data on Fulmaris glacialis as an example. For spatial estimation, we combined Poisson regression for modelling the trend as a function of water depth and distance to coast with kriging interpolation of the residual variability, assuming spatial (co)variances to be proportional to the trend value. Spatial averages were estimated by block kriging. For estimating temporal differences we used residual cokriging for two consecutive years, and show how this can be extended to analyse trends over multiple years. Approximate standard errors are obtained for all estimates. A comparison with a residual simple kriging approach reveals that ignoring temporal cross-correlations leads to a severe loss of statistical accuracy when assessing the significance of temporal changes. This article shows results for Fulmaris glacialis monitored during August/September in 1998 and 1999. Copyright © 2005 John Wiley & Sons, Ltd. [source] Seasonal variation in habitat use by salmon, Salmo salar, trout, Salmo trutta and grayling, Thymallus thymallus, in a chalk streamFISHERIES MANAGEMENT & ECOLOGY, Issue 4 2006W. D. RILEY Abstract, A portable multi-point decoder system deployed in a tributary of the River Itchen, a southern English chalk stream, recorded the habitats used by PIT-tagged juvenile salmon, Salmo salar L., trout, Salmo trutta L. and grayling, Thymallus thymallus L., with a high degree of spatial and temporal resolution. The fishes' use of habitat was monitored at 350 locations throughout the stream during September/October 2001 (feeding period) and January/February 2002 (over-wintering period). Salmon parr tended to occupy water 25,55 cm deep with a velocity between 0.4 and 1.0 m s,1. During both autumn and winter, first year salmon (0+ group) were associated with gravel substrate during the daytime and aquatic weed at night. In autumn, 1+ salmon were strongly associated with hard mud substrates during the day and with marginal tree roots at night. In winter, they were located on gravel substrate by day and gravel and mud at night. Trout were associated with a greater range of habitats than salmon, generally occupying deeper and faster water with increasing age. During the autumn, 0+ trout were located along shallow (5,10 cm) and slow (,0.1,0.4 m s,1) margins of the stream, amongst tree roots by day and on silty substrates at night. During winter the 0+ trout occupied silty substrates at all times. As age increased, trout increasingly used coarse substrates; hard mud, gravel and chalk, and weed at night. All age groups of grayling (0+, 1+ and 2+) tended to occupy hard gravel substrate at all times and used deeper and faster water with increasing age. The 1+ and 2+ groups were generally found in water 40,70 cm deep with a velocity between 0.3 and 0.5 ms,1, whilst the 0+ groups showed a preference for shallower water with reduced velocity at night, particularly in the winter. There were greater differences in the habitats used between species and age groups than between the autumn and winter periods, and the distribution of fish was more strongly influenced by substrate type than water depth or velocity. The results are discussed in relation to the habitat requirements of mixed salmonid populations and habitat management. [source] Influence of water flow velocity, water depth and colony distance on distribution and foraging patterns of terns in the Wadden SeaFISHERIES OCEANOGRAPHY, Issue 3 2009PHILIPP SCHWEMMER Abstract Surface-feeding seabirds, such as Common (Sterna hirundo) and Arctic Terns (Sterna paradisaea) in the German Wadden Sea, are dependent on biological and physical processes that affect prey availability close to the water surface. We proposed the following four hypotheses: (i) relationships should exist between high water flow velocity and foraging activity of terns, as turbulence should enhance prey availability at the surface; (ii) the areas of highest foraging success should be located within areas of low water depth, due to enhanced biological productivity; (iii) as terns are known to have small foraging radii, the location of their breeding grounds should be related to the location of their foraging grounds; (iv) terns should forage intensely in river estuaries, as these should hold ample food supplies. The time between terns leaving the colony and their first foraging attempt differed significantly among different tidal stages: the time was shortest during flood and ebb tides (i.e., highest water flow velocities). Modelling of a long-term data set revealed the highest probability of foraging activity in conditions of high water currents, in both shallow areas and in areas of around 15,20 m depth. Foraging activity was negatively correlated with distance from colony. The distance to the closest estuary had no significant effect on foraging behaviour. Our findings emphasize the physical,biological coupling in the Wadden Sea and highlight the overall importance of small-scale physical processes in directly influencing prey availability for surface-feeding seabirds. [source] Larval fish assemblages and water mass structure off the oligotrophic south-western Australian coastFISHERIES OCEANOGRAPHY, Issue 1 2008B. A. MUHLING Abstract Larval fish assemblages were sampled using replicated oblique bongo net tows along a five-station transect extending from inshore (18 m depth) to offshore waters (1000 m depth) off temperate south-western Australia. A total of 148 taxa from 93 teleost families were identified. Larvae of Gobiidae and Blenniidae were abundant inshore, while larvae of pelagic and reef-dwelling families, such as Clupeidae, Engraulidae, Carangidae and Labridae were common in continental shelf waters. Larvae of oceanic families, particularly Myctophidae, Phosichthyidae and Gonostomatidae, dominated offshore assemblages. Multivariate statistical analyses revealed larval fish assemblages to have a strong temporal and spatial structure. Assemblages were distinct among seasons, and among inshore, continental shelf and offshore sampling stations. Inshore larval fish assemblages were the most seasonal, in terms of species composition and abundance, with offshore assemblages the least seasonal. However, larval fish assemblages were most closely correlated to water mass, with species distributions reflecting both cross-shelf and along-shore oceanographic processes and events. Similarity profile (SIMPROF) analysis suggested the presence of twelve distinct larval fish assemblages, largely delineated by water depth and season. The strength and position of the warm, southward flowing Leeuwin Current, and of the cool, seasonal, northward flowing Capes Current, were shown to drive much of the variability in the marine environment, and thus larval fish assemblages. [source] Habitat associations of Atlantic herring in the Shetland area: influence of spatial scale and geographic segmentationFISHERIES OCEANOGRAPHY, Issue 3 2001CHRISTOS D. Maravelias This study considers the habitat associations of a pelagic species with a range of biotic and abiotic factors at three different spatial scales. Generalized additive models (GAM) are used to analyse trends in the distributional abundance of Atlantic herring (Clupea harengus) in relation to thermocline and water depth, seabed roughness and hardness, sea surface salinity and temperature, zooplankton abundance and spatial location. Two geographical segments of the population, those east and west of the Shetland Islands (northern North Sea, ICES Div IVa), are examined. The differences in the ecological preferences of the species in these two distinct geographical areas are elucidated and the degree that these environmental relationships might be modulated by the change of support of the data is also considered. Part of the observed variability of the pre-spawning distribution of herring was explained by different parameters in these two regions. Notwithstanding this, key determinants of the species' spatial aggregation in both areas were zooplankton abundance and the nature of the seabed substrate. The relative importance of the variables examined did not change significantly at different spatial scales of the observation window. The diverse significance of various environmental factors on herring distribution was attributed mainly to the interaction of species' dynamics with the different characteristics of the ecosystem, east and west of the Shetland Islands. Results suggest that the current 2.5 nautical miles as elementary sampling distance unit (ESDU) is a reasonable sampling scheme that combines the need to reduce the data volume while maintaining spatial resolution to distinguish the species/environment relationships. [source] Disturbance history influences the distribution of stream invertebrates by altering microhabitat parameters: a field experimentFRESHWATER BIOLOGY, Issue 5 2008MICHAEL EFFENBERGER Summary 1. We investigated the effects of local disturbance history and several biotic and abiotic habitat parameters on the microdistribution of benthic invertebrates after an experimental disturbance in a flood-prone German stream. 2. Bed movement patterns during a moderate flood were simulated by scouring and filling stream bed patches (area 0.49 m2) to a depth of 15,20 cm. Invertebrates were investigated using ceramic tiles as standardized substrata. After 1, 8, 22, 29, 36 and 50 days, we sampled one tile from each of 16 replicates of three bed stability treatments (scour, fill and stable controls). For each tile, we also determined water depth, near-bed current velocity, the grain size of the substratum beneath the tile, epilithic algal biomass and standing stock of particulate organic matter (POM). 3. Shortly after disturbance, total invertebrate density, taxon richness and density of the common taxa Baetis spp. and Chironomidae were highest in stable patches. Several weeks after disturbance, by contrast, Baetis spp. and Hydropsychidae were most common in fill and Leuctra spp. in scour patches. The black fly Simulium spp. was most abundant in fill patches from the first day onwards. Community evenness was highest in scour patches during the entire study. 4. Local disturbance history also influenced algal biomass and POM standing stock at the beginning of the experiment, and water depth, current velocity and substratum grain size throughout the experiment. Scouring mainly exposed finer substrata and caused local depressions in the stream bed characterized by slower near-bed current velocity. Algal biomass was higher in stable and scour patches and POM was highest in scour patches. In turn, all five common invertebrate taxa were frequently correlated with one or two of these habitat parameters. 5. Our results suggest that several ,direct' initial effects of local disturbance history on the invertebrates were subsequently replaced by ,indirect' effects of disturbance history (via disturbance-induced changes in habitat parameters such as current velocity or food). [source] Effects of mute swan grazing on a keystone macrophyteFRESHWATER BIOLOGY, Issue 12 2007MATTHEW T. O'HARE Summary 1. This study describes the early summer foraging behaviour of mute swans (Cygnus olor) on the River Frome, a highly productive chalk stream in southern England in which Ranunculus penicillatus pseudofluitans is the dominant macrophyte. 2. A daily maximum of 41 ± 2.5 swans were present along the 1.1 km study reach during the study period (late May to the end of June). The river was the primary feeding habitat. Feeding activity on the river at dawn and dusk was much lower than during daylight, but we cannot rule out the possibility that swans fed during the hours of darkness. 3. The effects of herbivory on R. pseudofluitans biomass and morphology were quantified. Biomass was lower in grazed areas and swans grazed selectively on leaves in preference to stems. A lower proportion of stems from grazed areas possessed intact stem apices and flowering of the plant was reduced in grazed areas. 4. A model, based on the swans' daily consumption, was used to predict the grazing pressure of swans on R. pseudofluitans. The model accurately predicted the number of bird days supported by the study site, only if grazing was assumed to severely reduce R. pseudofluitans growth. The proportion of the initial R. pseudofluitans biomass consumed by a fixed number of swans was predicted to be greater when the habitat area was smaller, initial R. pseudofluitans biomass was lower and R. pseudofluitans was of lower food value. 5. We concluded that the flux of N and P through the study reach was largely unaffected by swan activity. The quality of R. pseudofluitans mesohabitat (the plant as habitat for invertebrates and fish) was significantly reduced by grazing which also indirectly contributed to reduced roughness (Manning's n) and by inference water depth. Wetted habitat area for fish and invertebrates would also be lowered over the summer period as a consequence of the reduction in water depth. It was estimated that, while grazing, an individual swan may eat the same mass of invertebrates per day as a 300-g trout. 6. There is a need to manage the conflict between mute swans and the keystone macrophyte, R. pseudofluitans, in chalk streams, and the modelling approach used here offers a potentially useful tool for this purpose. [source] Priming the productivity pump: flood pulse driven trends in suspended algal biomass distribution across a restored floodplainFRESHWATER BIOLOGY, Issue 8 2006DYLAN S. AHEARN Summary 1. Chlorophyll a (Chl a) distribution across a 0.36 km2 restored floodplain (Cosumnes River, California) was analysed throughout the winter and spring flood season from January to June 2005. In addition, high temporal-resolution Chl a measurements were made in situ with field fluorometers in the floodplain and adjacent channel. 2. The primary objectives were to characterise suspended algal biomass distribution across the floodplain at various degrees of connection with the channel and to correlate Chl a concentration and distribution with physical and chemical gradients across the floodplain. 3. Our analysis indicates that periodic connection and disconnection of the floodplain with the channel is vital to the functioning of the floodplain as a source of concentrated suspended algal biomass for downstream aquatic ecosystems. 4. Peak Chl a levels on the floodplain occurred during disconnection, reaching levels as high as 25 ,g L,1. Chl a distribution across the floodplain was controlled by residence time and local physical/biological conditions, the latter of which were primarily a function of water depth. 5. During connection, the primary pond on the floodplain exhibited low Chl a (mean = 3.4 ,g L,1) and the shallow littoral zones had elevated concentrations (mean = 4.6 ,g L,1); during disconnection, shallow zone Chl a increased (mean = 12.4 ,g L,1), but the pond experienced the greatest algal growth (mean = 14.7 ,g L,1). 6. Storm-induced floodwaters entering the floodplain not only displaced antecedent floodplain waters, but also redistributed floodplain resources, creating complex mixing dynamics between parcels of water with distinct chemistries. Incomplete replacement of antecedent floodplain waters led to localised hypoxia in non-flushed areas. 7. The degree of complexity revealed in this analysis makes clear the need for high-resolution spatial and temporal studies such as this to begin to understand the functioning of dynamic and heterogeneous floodplain ecosystems. [source] Flow-substrate interactions create and mediate leaf litter resource patches in streamsFRESHWATER BIOLOGY, Issue 3 2006TRENT M. HOOVER Summary 1. The roles that streambed geometry, channel morphology, and water velocity play in the retention and subsequent breakdown of leaf litter in small streams were examined by conducting a series of field and laboratory experiments. 2. In the first experiment, conditioned red alder (Alnus rubra Bongard) leaves were released individually in three riffles and three pools in a second-order stream. The transport distance of each leaf was measured. Several channel and streambed variables were measured at each leaf settlement location and compared with a similar number of measurements taken at regular intervals along streambed transects (,reference locations'). Channel features (such as water depth) and substrate variables (including stone height, stone height-to-width ratio, and relative protrusion) were the most important factors in leaf retention. 3. In the second experiment, the role of settlement location and reach type in determining the rate of leaf litter breakdown was examined by placing individual conditioned red alder leaves in exposed and sheltered locations (on the upper and lower edges of the upstream face of streambed stones, respectively) in riffle and pool habitats. After 10 days, percent mass remaining of each leaf was measured. Generally, leaves broke down faster in pools than in riffles. However, the role of exposure in breakdown rate differed between reach types (exposed pool > sheltered pool > sheltered riffle > exposed riffle). 4. In the third experiment, the importance of substrate geometry on leaf litter retention was examined by individually releasing artificial leaves upstream of a series of substrate models of varying shape. Substrates with high-angle upstream faces (were vertical or close to vertical), and that had high aspect ratios (were tall relative to their width), retained leaves more effectively. 5. These results show that streambed morphology is an important factor in leaf litter retention and breakdown. Interactions between substrate and flow characteristics lead to the creation of detrital resource patchiness, and may partition leaf litter inputs between riffles and pools in streams at baseflow conditions. [source] Day,night changes in the spatial distribution and habitat preferences of freshwater shrimps, Gammarus pulex, in a stony streamFRESHWATER BIOLOGY, Issue 4 2005J. M. ELLIOTT Summary 1. As many invertebrates are nocturnal, their spatial distribution and habitat preferences may change from day to night. Both aspects are examined for Gammarus pulex by testing the hypotheses: (i) a power function was a suitable model for the spatial distribution of the shrimps in both day and night; (ii) diurnal and nocturnal spatial distributions were significantly different; (iii) diurnal and nocturnal habitat preferences were significantly different. Five different life-stages were treated separately. To ensure that the conclusions were consistent, large samples were taken near midday and midnight in April, June and November over 4 years at two sites about 3 km apart in a stony stream: downstream (n = 30) and upstream (n = 50). 2. The first and second hypotheses were supported at both sites. A power function, relating spatial variance (s2) to mean (m), was an excellent fit in all analyses (P < 0.001, r2 > 0.91), i.e. the spatial variance was density-dependent. All five life-stages were aggregated in the day. At night, the degree of aggregation increased for juveniles at higher densities but decreased for juveniles at lower densities, increased for immature females and males, but decreased slightly for mature females and especially mature males, the latter being close to a random distribution. There were no significant differences between sites, in spite of the lower numbers at the downstream site. 3. The third hypothesis was tested at only the upstream site and supported by comparisons between shrimp densities and 13 physical variables (distance from bank, water depth, water velocity, ten particle size-classes), and three non-physical variables (dry weights of bryophytes, leaf material, organic detritus). During the day, densities were strongly related to particle sizes with the following preferences: 0.5,8 mm for juveniles, 8,256 mm for the other life-stages with a weaker relationship for males. There were no significant positive relationships with the other variables, apart from bryophytes for immature shrimps and adults. At night, densities were unrelated to particle size; juveniles and immature shrimps preferred low water velocities near the banks, often where leaf material and organic detritus accumulated, females often preferred medium water velocities slightly away from the banks, and males showed no habitat preferences. 4. Day samples do not provide a complete picture of habitat preferences and probably identify refuge habitats. Day,night changes in spatial distribution and habitat preferences are an essential part of the behavioural dynamics of the shrimps and should be investigated in other species. [source] Local disturbance history affects patchiness of benthic river algaeFRESHWATER BIOLOGY, Issue 9 2003Christoph D. Matthaei Summary 1.,Recent research has shown that high-flow events in streams leave a small-scale mosaic of bed patches that have experienced scouring, sediment deposition (fill), or remained stable. Few studies have investigated if this ,local disturbance history' contributes to the patchy distribution of benthic organisms in streams and rivers. 2.,In the present research, we demonstrate that local disturbance history in a mid-sized river can have both short- and long-term effects on epilithic algae. Chains buried vertically in the substratum of the river bed (236 in a 800-m reach) indicated that two floods (return periods ,1 year) caused a mosaic of bed patches with different disturbance histories. Once after the first and twice after the second flood, we sampled epilithic algae (mainly diatoms) in replicate patches that had been scoured, filled, or remained stable during the respective event. Algal biomass and cell density per substratum area were determined. 3.,Three months after the first flood, algal biomass, total diatom density, diatom taxon richness, and densities of six of nine most common taxa were highest in fill patches. Six days after the second flood, biomass was highest in stable patches, indicating a refugium function of these patches. The refugium patches consisted of average-sized stones, in contrast to previous studies of flood refugia for benthic algae in which these refugia were always large and/or immobile substrata. Four weeks after the second flood, diatoms tended to be most abundant in scour patches. With one exception, these differences between patch types could not be attributed to differences in local near-bed current velocity or water depth. 4.,The effects of disturbance history were more complex than a simple refugium function of stable patches because algal patterns changed with time since the last disturbance, possibly depending on the successional state of the algal mats. [source] Effects of longitudinal variations in stream habitat structure on fish abundance: an analysis based on subunit-scale habitat classificationFRESHWATER BIOLOGY, Issue 9 2002Mikio Inoue SUMMARY 1.,Stream reaches contain assortments of various habitat types that can be defined at different spatial scales, such as channel unit (e.g. pools, riffles) and subunit (patches within channel units). We described longitudinal (upstream,downstream) patterns of stream habitat structure by considering subunits as structural elements, and examined their effects on the abundance of masu salmon (Oncorhynchus masou) and rosyface dace (Leuciscus ezoe) in a third-order tributary of the Teshio River in northern Hokkaido, Japan. 2.,Nine subunit types were determined on the basis of water depth, current velocity and substrate, using 0.5 × 0.5 m grids. Although both masu salmon and rosyface dace used pools as a major habitat, the former preferred a subunit type occurring at pool heads (PH subunit) while the latter preferred a slow-current edge type (SE-2 subunit). 3.,Along the course of the stream, slow-edge subunits (SE-1, 2 and 3) increased in frequency downstream while fast-edge subunits (FE-1 and 2) decreased, suggesting a downstream development of slow-current edges. Regression analyses indicated that longitudinal variation in masu salmon abundance was explained by the area of PH, rather than pools. Masu salmon density increased with the area of PH. Rosyface dace abundance was explained by a combination of water depth and the area of SE-2, both effects being positive. 4.,Longitudinal variations in the abundance of both species were related to the abundance of their preferred habitat at the subunit scale, rather than channel-unit scale. The results emphasise the importance of fine-scale patchiness when examining stream fish habitats. [source] A comparative analysis of the diving behaviour of birds and mammalsFUNCTIONAL ECOLOGY, Issue 5 2006L. G. HALSEY Summary 1We use a large interspecific data set on diving variables for birds and mammals, and statistical techniques to control for the effects of phylogenetic non-independence, to assess evolutionary associations among different elements of diving behaviour across a broad and diverse range of diving species. Our aim is to assess whether the diving ability of homeothermic vertebrates is influenced by factors other than the physiology of the species. 2Body mass is related to dive duration even when dive depth is controlled for and thus for a given dive depth, larger species dive for longer. This implies that larger species have a greater capacity for diving than is expressed in their dive depth. Larger animals that dive shallowly, probably for ecological reasons such as water depth, make use of the physiological advantage that their size confers by diving for longer. 3Dive duration correlates with dive depth more strongly than with body mass. This confirms that some animals are poor divers for their body mass, either because of a lower physiological capacity or because their behaviour limits their diving. 4Surface duration relates not only to dive duration but also to dive depth, as well as to both independently. This indicates a relationship between dive depth and surface duration controlling for dive duration, which suggests that deeper dives are energetically more expensive than shallow dives of the same duration. 5Taxonomic class does not improve any of the dive variable models in the present study. There is thus an unsuspected consistency in the broad responses of different groups to the effects on diving of the environment, which are therefore general features of diving evolution. [source] AVO investigations of shallow marine sedimentsGEOPHYSICAL PROSPECTING, Issue 2 2001M. Riedel Amplitude-variation-with-offset (AVO) analysis is based on the Zoeppritz equations, which enable the computation of reflection and transmission coefficients as a function of offset or angle of incidence. High-frequency (up to 700 Hz) AVO studies, presented here, have been used to determine the physical properties of sediments in a shallow marine environment (20 m water depth). The properties that can be constrained are P- and S-wave velocities, bulk density and acoustic attenuation. The use of higher frequencies requires special analysis including careful geometry and source and receiver directivity corrections. In the past, marine sediments have been modelled as elastic materials. However, viscoelastic models which include absorption are more realistic. At angles of incidence greater than 40°, AVO functions derived from viscoelastic models differ from those with purely elastic properties in the absence of a critical angle of incidence. The influence of S-wave velocity on the reflection coefficient is small (especially for low S-wave velocities encountered at the sea-floor). Thus, it is difficult to extract the S-wave parameter from AVO trends. On the other hand, P-wave velocity and density show a considerably stronger effect. Attenuation (described by the quality factor Q) influences the reflection coefficient but could not be determined uniquely from the AVO functions. In order to measure the reflection coefficient in a seismogram, the amplitudes of the direct wave and the sea-floor reflection in a common-midpoint (CMP) gather are determined and corrected for spherical divergence as well as source and streamer directivity. At CMP locations showing the different AVO characteristics of a mud and a boulder clay, the sediment physical properties are determined by using a sequential-quadratic-programming (SQP) inversion technique. The inverted sediment physical properties for the mud are: P-wave velocity ,=1450±25 m/s, S-wave velocity ,=90±35 m/s, density ,=1220±45 kg/m3, quality factor for P-wave QP=15±200, quality factor for S-wave QS=10±30. The inverted sediment physical properties for the boulder clay are: ,=1620±45 m/s,,=360±200 m/s,,=1380±85 kg/m3,QP=790±660,QS=25±10. [source] 3D float tracking: in situ floodplain roughness estimationHYDROLOGICAL PROCESSES, Issue 2 2009Menno Straatsma Abstract This paper presents a novel technique to quantify in situ hydrodynamic roughness of submerged floodplain vegetation: 3D float tracking. This method uses a custom-built floating tripod that is released on the inundated floodplain and tracked from shore by a robotic total station. Simultaneously, an acoustic Doppler current profiler (ADCP) collects flow velocity profiles and water depth data. Roughness values are derived from two methods based on (1) run-averaged values of water depth, slope and flow velocity to compute the roughness based on the Chézy equation, assuming uniform flow, (2) the equation for one-dimensional free surface flow in a moving window. A sensitivity analysis using synthetic data proved that the median value of the roughness, derived using method 2, is independent of (1) the noise in water levels, up to 9 mm, (2) bottom surface slope, and (3) topographic undulations. The window size should be at least 40 m for a typical lowland river setup. Field measurements were carried out on two floodplain sections with an average vegetation height of 0·030 (Arnhem) and 0·043 m (Dreumel). Method 1 resulted in a Nikuradse roughness length of 0·08 m for both locations. Method 2 gave 0·12 m for Arnhem and 0·19 m for Dreumel. In Arnhem, a spatial pattern of roughness values was present, which might be related to fractional vegetation cover or vegetation density during the flood peak. 3D float tracking proved a flexible and detailed method for roughness determination in the absence of waves, and provided an unrestricted view from shore. Copyright © 2008 John Wiley & Sons, Ltd. [source] Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent on in situ soilHYDROLOGICAL PROCESSES, Issue 17 2007G. Leighton-Boyce Abstract The conventional view of soil water repellency is that it promotes overland flow and soil erosion, but this is not always borne out by observations. This study aimed to isolate the effects of repellency on long-unburnt and recently burnt terrain on infiltration, overland flow and erosion at the small plot scale (0·36 m2). Rainfall simulations (30 min; intensity 100 mm h,1), using untreated water, and water treated with surfactants to eliminate repellency, were conducted on in situ repellent soils in fire-prone Eucalyptus globulus plantations, north-central Portugal at (i) a long-unburnt site with and without litter, and (ii) a recently burnt site. On long-unburnt terrain, the mean overland flow coefficient (33%) was 16 times higher and mean slopewash was 23 times higher under repellent compared with wettable conditions. On recently burnt terrain, no overland flow was recorded under wettable conditions, while under repellent conditions the mean coefficient was 70%. The water storage capacity of the litter layer under 10-year-old eucalyptus stands for dry antecedent conditions was at least 3 mm water depth per cm litter depth, implying at least a delay to the onset of overland flow. Severe repellency (36% ethanol) was found to persist through a 30-min storm (100 mm h,1) when a litter layer was present. A continuous wetting front was observed in the upper ,1 cm of exposed soil, indicating a breakdown in repellency at the time of observation. Below ,1 cm, repellent, dry soil conditions generally persisted through the simulated storm event. A major implication is that prediction of hydrological impacts of repellency must also take into account the infiltration characteristics of any litter layer and any non-repellent soils, if present. Copyright © 2007 John Wiley & Sons, Ltd. [source] Hydrological influences on hyporheic water quality: implications for salmon egg survivalHYDROLOGICAL PROCESSES, Issue 9 2004I. A. Malcolm Abstract The spatial and temporal variability of groundwater,surface-water (GW,SW) interactions was investigated in an intensively utilized salmon spawning riffle. Hydrochemical tracers, were used along with high-resolution hydraulic head and temperature data to assess hyporheic dynamics. Surface and subsurface hydrochemistry were monitored at three locations where salmon spawning had been observed in previous years. Temperature and hydraulic head were monitored in three nests of three piezometers located to characterize the head, the run and the tail-out of the riffle feature. Hydrochemical gradients between surface and subsurface water indicated increasing GW influence with depth into the hyporheic zone. Surface water was characterized by high dissolved oxygen (DO) concentrations, low alkalinity and conductivity. Hyporheic water was generally characterized by high levels of alkalinity and conductivity indicative of longer residence times, and low DO, indicative of reducing conditions. Hydrochemical and temperature gradients varied spatially over the riffle in response to changes in local GW,SW interactions at the depths investigated. Groundwater inputs dominated the head and tail of the riffle. The influence of SW increased in the area of accelerating flow and decreasing water depth through the run of the riffle. Temporal GW,SW interactions also varied in response to changing hydrological conditions. Gross changes in hyporheic hydrochemistry were observed at the weekly scale in response to changing flow conditions and surface water inputs to the hyporheic zone. During low flows, caused by freezing or dry weather, hyporheic hydrochemistry was dominated by GW inputs. During higher flows hyporheic hydrochemistry indicated that SW contributions increased. In addition, high-resolution hydraulic head data indicated that rapid changes in GW,SW interactions occurred during hydrological events. The spatial, and possibly the temporal, variability of GW,SW interactions had a marked effect on the survival of salmon ova. It is concluded that hyporheic dynamics and their effect on stream ecology should be given increased consideration by fisheries and water resource managers. Copyright © 2004 John Wiley & Sons, Ltd. [source] The dynamics of unattached benthic macroalgal accumulations in the Swan,Canning EstuaryHYDROLOGICAL PROCESSES, Issue 13 2001Helen Astill Abstract It has been suggested that macroalgal accumulations may impact on benthic nutrient cycling by promoting remineralization of sedimentary nutrients, otherwise inaccessible, and act as sinks/sources for dissolved nutrients in the water column. However, little consideration has been given to the time taken for these impacts to occur, and if accumulations persist long enough in a region for impacts to occur. In this study, accumulations were characterized seasonally, according to biomass, height relative to water depth, and organic content of the underlying sediment, from November 1996 to August 1997, in the Swan,Canning Estuary. Persistence of accumulations was measured from late summer to mid-winter in 1997, by tagging individual plants and recording the time tagged plants persisted at 10 sites. In summer 1998, physicochemical profiles of accumulations were measured over 24 h, at two locations: one with relatively low sediment organic content (SOCn) (1·5% LOI) and one with relatively high SOC (6% LOI). Accumulations rarely exceeded 25 cm in height, regardless of water column depth, and ranged between 100 and 500 g dwt m,2. Macroalgae persisted between one week, in relatively well-flushed regions, to one month in areas with poor flushing. Over the entire diurnal period, almost 100% of incident light was attenuated at the bottom of all accumulations. Dissolved oxygen levels at the bottom of accumulations were generally depressed, particularly at night, with hypoxia (1 mg l,1) recorded at the high SOC site at 03 : 00 h. No significant differences in FRP concentrations (approximately 30,60 µg l,1) were recorded between sites, or within accumulation profiles. Ammonium levels were greatly raised inside accumulations at the high SOC site by 03 : 00 h (10 and 300 µg l,1, inside and outside, respectively). The results show that, where SOC is high, conditions within accumulations are affected. Impacts occurred within 24 h; well within the period for which accumulations persist. These results also indicate that regulation of hydrological regimes in estuarine systems may result in increased persistence of macroalgal accumulations, and associated water quality problems. Copyright © 2001 John Wiley & Sons, Ltd. [source] |