Home About us Contact | |||
Water Cycle (water + cycle)
Selected Abstracts,Land Moves and Behaves': Indigenous Discourse on Sustainable Land Management in Pichataro, Patzcuaro Basin, MexicoGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3-4 2003Narciso Barrera-Bassols ABSTRACT An ethnoecological study was carried out in the Purhepecha community of San Francisco Pichataro, west central Mexico, with the purpose of investigating how land degradation, in terms of soil erosion and fertility depletion, was (and still is) handled by indigenous farmers so that traditional agriculture could remain sustainable over centuries. After briefly reviewing opposite views on the land degradation issue in the regional context of the Patzcuaro lake basin, the paper focuses on land management at local level. The indigenous concept of land is discussed as an integrated whole, including water cycle, climate, relief and soils. Indigenous people venerate land as the mother of all living beings, including humans. Therefore, people's health and survival require good land care and management. Local knowledge on land management is organized around four basic principles: land position, land behaviour, land resilience and land quality. Fanners recognize land as a dynamic subject, a concept reflected in the expression ,land moves and behaves'. Soil erosion and fertility depletion are perceived as ,normal' processes the farmers control by means of integrated management practices. Farmers recognize several land classes, primarily controlled by landscape position, which require different land care. The example of San Francisco Pichataro demonstrates that traditional agriculture does not necessarily lead to land degradation. But the collective knowledge, or social theory, on land management is increasingly exposed to be fragmented as the community undergoes structural changes and loses its social cohesion under the pressure of externalities such as off-farm activities, out-migrations and governmental intervention, among others. [source] Synergy between small- and large-scale feedbacks of vegetation on the water cycleGLOBAL CHANGE BIOLOGY, Issue 7 2005Marten Scheffer Abstract Predictions of the effects of climate change on the extent of forests, savannas and deserts are usually based on simple response models derived from actual vegetation distributions. In this review, we show two major problems with the implicitly assumed straightforward cause,effect relationship. Firstly, several studies suggest that vegetation itself may have considerable effects on regional climate implying a positive feedback, which can potentially lead to large-scale hysteresis. Secondly, vegetation ecologists have found that effects of plants on microclimate and soils can cause a microscale positive feedback, implying that critical precipitation conditions for colonization of a site may differ from those for disappearance from that site. We argue that it is important to integrate these nonlinearities at disparate scales in models to produce more realistic predictions of potential effects of climate change and deforestation. [source] Ground Water Recharge and Chemical Contaminants: Challenges in Communicating the Connections and Collisions of Two Disparate WorldsGROUND WATER MONITORING & REMEDIATION, Issue 2 2004Christian G. Daughton Our knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing , the papers in this volume serving as testament. However, complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in ground water, especially ground water augmented with treated waste water. Public acceptance for direct or indirect ground water recharge using treated municipal waste water (especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this paper, I detour around the issues most commonly discussed regarding ground water recharge and instead focus on some of the less-recognized issues,those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of waste water reuse with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision-making process for accepting, or rejecting, water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water is and how it functions in the environment,just exactly what the water cycle is. These questions suggest it might behoove us to revisit some very elementary aspects of our science and how we are conveying them to the public. [source] Implications of global climate change for snowmelt hydrology in the twenty-first centuryHYDROLOGICAL PROCESSES, Issue 7 2009Jennifer C. Adam Abstract For most of the global land area poleward of about 40° latitude, snow plays an important role in the water cycle. The (seasonal) timing of runoff in these areas is especially sensitive to projected losses of snowpack associated with warming trends, whereas projected (annual) runoff volume changes are primarily associated with precipitation changes, and to a lesser extent, with changes in evapotranspiration (ET). Regional studies in the USA (and especially the western USA) suggest that hydrologic adjustments to a warming climate have been ongoing since the mid-twentieth century. We extend the insights extracted from the western USA to the global scale using a physically based hydrologic model to assess the effects of systematic changes in precipitation and temperature on snow-affected portions of the global land area as projected by a suite of global climate models. While annual (and in some cases seasonal) changes in precipitation are a key driver of projected changes in annual runoff, we find, as in the western USA, that projected warming produces strong decreases in winter snow accumulation and spring snowmelt over much of the affected area regardless of precipitation change. Decreased snowpack produces decreases in warm-season runoff in many mid- to high-latitude areas where precipitation changes are either moderately positive or negative in the future projections. Exceptions, however, occur in some high-latitude areas, particular in Eurasia, where changes in projected precipitation are large enough to result in increased, rather than decreased, snow accumulation. Overall, projected changes in snowpack and the timing of snowmelt-derived runoff are largest near the boundaries of the areas that currently experience substantial snowfall, and at least qualitatively, they mirror the character of observed changes in the western USA. Copyright © 2008 John Wiley & Sons, Ltd. [source] Understanding hydrological processes with scarce data in a mountain environmentHYDROLOGICAL PROCESSES, Issue 12 2008A. Chaponnière Abstract Performance of process-based hydrological models is usually assessed through comparison between simulated and measured streamflow. Although necessary, this analysis is not sufficient to estimate the quality and realism of the modelling since streamflow integrates all processes of the water cycle, including intermediate production or redistribution processes such as snowmelt or groundwater flow. Assessing the performance of hydrological models in simulating accurately intermediate processes is often difficult and requires heavy experimental investments. In this study, conceptual hydrological modelling (using SWAT) of a semi-arid mountainous watershed in the High Atlas in Morocco is attempted. Our objective is to analyse whether good intermediate processes simulation is reached when global-satisfying streamflow simulation is possible. First, parameters presenting intercorrelation issues are identified: from the soil, the groundwater and, to a lesser extent, from the snow. Second, methodologies are developed to retrieve information from accessible intermediate hydrological processes. A geochemical method is used to quantify the contribution of a superficial and a deep reservoir to streamflow. It is shown that, for this specific process, the model formalism is not adapted to our study area and thus leads to poor simulation results. A remote-sensing methodology is proposed to retrieve the snow surfaces. Comparison with the simulation shows that this process can be satisfyingly simulated by the model. The multidisciplinary approach adopted in this study, although supported by the hydrological community, is still uncommon. Copyright © 2007 John Wiley & Sons, Ltd. [source] Hydrometeorological behaviour of pine and larch forests in eastern SiberiaHYDROLOGICAL PROCESSES, Issue 1 2004Shuko Hamada Abstract Seasonal changes in the water and energy exchanges over a pine forest in eastern Siberia were investigated and compared with published data from a nearby larch forest. Continuous observations (April to August 2000) were made of the eddy-correlation sensible heat flux and latent heat flux above the canopy. The energy balance was almost closed, although the sum of the turbulent fluxes sometimes exceeded the available energy flux (Rn , G) when the latent heat flux was large; this was related to the wind direction. We examined the seasonal variation in energy balance components at this site. The seasonal variation and magnitude of the sensible heat flux (H) was similar to that of the latent heat flux (,E), with maximum values occurring in mid-June. Consequently, the Bowen ratio was around 1·0 on many days during the study period. On some clear days just after rainfall, ,E was very large and the sum of H and ,E exceeded Rn , G. The evapotranspiration rate above the dry canopy from May to August was 2·2 mm day,1. The contributions of understory evapotranspiration (Eu) and overstory transpiration (Eo) to the evapotranspiration of the entire ecosystem (Et) were both from 25 to 50% throughout the period analysed. These results suggest that Eu plays a very important role in the water cycle at this site. From snowmelt through the tree growth season (23 April to 19 August 2000), the total incoming water, comprised of the sum of precipitation and the water equivalent of the snow at the beginning of the melt season, was 228 mm. Total evapotranspiration from the forest, including interception loss and evaporation from the soil when the canopy was wet, was 208,254 mm. The difference between the incoming and outgoing amounts in the water balance was from +20 to ,26 mm. The water and energy exchanges of the pine and larch forest differed in that ,E and H increased slowly in the pine forest, whereas ,E increased rapidly in the larch forest and H decreased sharply after the melting season. Consequently, the shape of the Bowen ratio curves at the two sites differed over the period analysed, as a result of the differences in the species in each forest and in soil thawing. Copyright © 2003 John Wiley & Sons, Ltd. [source] Simulating pan-Arctic runoff with a macro-scale terrestrial water balance modelHYDROLOGICAL PROCESSES, Issue 13 2003Michael A. Rawlins Abstract A terrestrial hydrological model, developed to simulate the high-latitude water cycle, is described, along with comparisons with observed data across the pan-Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan-Arctic. The pan-Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw,freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980,2001. P/WBM-generated maximum summer active-layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1,) seen in field samples. Simulated long-term annual runoffs are in the range 100 to 400 mm year,1. The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long-term seasonal (winter, spring, summer,fall) runoff to the ten Arctic sea basins (r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub-model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, emphasize the need to develop improved spatial data sets of key geophysical quantities (particularly climate time series) to estimate terrestrial Arctic hydrological budgets better. Copyright © 2003 John Wiley & Sons, Ltd. [source] Measurement of atmospheric water vapour on the ground's surface by radio wavesHYDROLOGICAL PROCESSES, Issue 11 2001Tokuo Kishii Abstract Water vapour in the atmosphere and various meteorological phenomena are essential to the understanding of the mechanism of the water cycle. However, it is very difficult to observe water vapour in the atmosphere because the quantities are usually observed at a single point not over long intervals or in a specific plane or volume. Accordingly, the use of radio waves is considered to be necessary to observe water vapour. Radio waves can be transmitted over long intervals and across large areas, and generally speaking, the characteristics of radio waves change due to material in the atmosphere, especially water vapour. Usually absorption is used to observe the quantity of water vapour. But the relationship between absorption and the quantity of water vapour is not linear, so we try to utilize the phase difference between two radio waves as an alternative method. First, the relationship between the phase delay and the water vapour was induced by a physical equation and the resulting phase delay was found to be proportional to the quantity of water vapour. Furthermore, the phase difference between two separate points was observed by use of two radio waves in the field, specifically 84 GHz and 245 GHz. For reference and comparison, water vapour density in the atmosphere was simultaneously observed by meteorological observation. As a result, the density of the water vapour was found to be proportional to the phase difference between the two radio waves. The result also shows that this method is able to measure the diurnal changes in water vapour density in each season. Copyright © 2001 John Wiley & Sons, Ltd. [source] System thinking skills at the elementary school levelJOURNAL OF RESEARCH IN SCIENCE TEACHING, Issue 5 2010Orit Ben-Zvi Assaraf Abstract This study deals with the development of system thinking skills at the elementary school level. It addresses the question of whether elementary school students can deal with complex systems. The sample included 40 4th grade students from one school in a small town in Israel. The students studied an inquiry-based earth systems curriculum that focuses on the hydro-cycle. The program involved lab simulations and experiments, direct interaction with components and processes of the water cycle in the outdoor learning environment and knowledge integration activities. Despite the students' minimal initial system thinking abilities, most of them made significant progress with their ability to analyze the hydrological earth system to its components and processes. As a result, they recognized interconnections between components of a system. Some of the students reached higher system thinking abilities, such as identifying interrelationships among several earth systems and identifying hidden parts of the hydrological system. The direct contact with real phenomena and processes in small scale scenarios enabled these students to create a concrete local water cycle, which could later be expanded into large scale abstract global cycles. The incorporation of outdoor inquiry-based learning with lab inquiry-based activities and knowledge integration assignments contributed to the 4th grade students' capacity to develop basic system thinking abilities at their young age. This suggests that although system thinking is regarded as a high order thinking skill, it can be developed to a certain extent in elementary school. With a proper long-term curriculum, these abilities can serve as the basis for the development of higher stages of system thinking at the junior,high/middle school level. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 540,563, 2010 [source] Exploring the role of intertextuality in concept construction: Urban second graders make sense of evaporation, boiling, and condensation,JOURNAL OF RESEARCH IN SCIENCE TEACHING, Issue 7 2006Maria Varelas The study explores urban second graders' thinking and talking about the concepts of evaporation, boiling, and condensation that emerged in the context of intertextuality within an integrated science-literacy unit on the topic of States of Matter, which emphasized the water cycle. In that unit, children and teacher engaged in a variety of activities (reading information books, doing hands-on explorations, writing, drawing, discussing) in a dialogically oriented way where teacher and children shared the power and the burden of making meaning. The three qualitative interrelated analyses showed children who initiated or continued productive links to texts, broadly defined, that gave them spaces to grapple with complex ideas and ways of expressing them. Although some children showed preference for a certain way of thinking about evaporation, boiling, and condensation, the data do not point toward a definite conclusion relative to whether children subscribe or not to a particular conceptual position. Children had multiple, complex, and often speculative, tentative, and emergent ways of accessing and interpreting these phenomena, and their conceptions were contextually based,different contexts offered opportunities for students to theorize about different aspects of the phenomena (along with some similar aspects). Children also theorized about aspects of the same phenomena in different ways. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 637,666, 2006 [source] Individual and group meaning-making in an urban third grade classroom: Red fog, cold cans, and seeping vaporJOURNAL OF RESEARCH IN SCIENCE TEACHING, Issue 9 2005Sherry Southerland We examined third graders' understandings of condensation using an expanded notion of the Emergent Perspective, a reflexive consideration of individual and group meaning-making situated in the culture of the classroom. Data were collected from two small groups of students in an inquiry-based, urban classroom during a unit on the water cycle. Measures included conceptual pre-/posttests, interviews, written work, and discourse analyses of a science lesson. Although we identified the supportive role of the teacher's explicit assessments of children's ideas, within the small groups, the force that most potently shaped meaning-making was students' persuasive power, which was in part influenced by the rhetorical moves employed. Specifically, students' evaluative comments (a type of rhetorical move) about contributions of other group members seemed to be particularly persuasive in these groups. Evaluative comments, apart from students' academic status, were shown to be an important influence in not only social knowledge production but also in individual internalization. Our explanation focuses on the particular discursive practices as intellectual resources of urban students, but we are also mindful of the cognitive complexity of the material and the developmental abilities of the students. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 42: 1032,1061, 2005 [source] Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulationsGLOBAL CHANGE BIOLOGY, Issue 9 2005Paul J. Hanson Abstract Observed responses of upland-oak vegetation of the eastern deciduous hardwood forest to changing CO2, temperature, precipitation and tropospheric ozone (O3) were derived from field studies and interpreted with a stand-level model for an 11-year range of environmental variation upon which scenarios of future environmental change were imposed. Scenarios for the year 2100 included elevated [CO2] and [O3] (+385 ppm and +20 ppb, respectively), warming (+4°C), and increased winter precipitation (+20% November,March). Simulations were run with and without adjustments for experimentally observed physiological and biomass adjustments. Initial simplistic model runs for single-factor changes in CO2 and temperature predicted substantial increases (+191% or 508 g C m,2 yr,1) or decreases (,206% or ,549 g C m,2 yr,1), respectively, in mean annual net ecosystem carbon exchange (NEEa,266±23 g C m,2 yr,1 from 1993 to 2003). Conversely, single-factor changes in precipitation or O3 had comparatively small effects on NEEa (0% and ,35%, respectively). The combined influence of all four environmental changes yielded a 29% reduction in mean annual NEEa. These results suggested that future CO2 -induced enhancements of gross photosynthesis would be largely offset by temperature-induced increases in respiration, exacerbation of water deficits, and O3 -induced reductions in photosynthesis. However, when experimentally observed physiological adjustments were included in the simulations (e.g. acclimation of leaf respiration to warming), the combined influence of the year 2100 scenario resulted in a 20% increase in NEEa not a decrease. Consistent with the annual model's predictions, simulations with a forest succession model run for gradually changing conditions from 2000 to 2100 indicated an 11% increase in stand wood biomass in the future compared with current conditions. These model-based analyses identify critical areas of uncertainty for multivariate predictions of future ecosystem response, and underscore the importance of long term field experiments for the evaluation of acclimation and growth under complex environmental scenarios. [source] Estimating the evolution of vegetation cover and its hydrological impact in the Mekong River basin in the 21st centuryHYDROLOGICAL PROCESSES, Issue 9 2008Hiroshi Ishidaira Abstract The terrestrial biosphere plays a key role in regional energy and water cycles. Thus, for long-term hydrological predictions, possible future changes in vegetation cover must be understood. This study examined the evolution of vegetation cover in the 21st century and its estimated impact on river discharge in the Mekong River basin. Based on climatic predictions (TYN SC 2·03) under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A1FI, A2, B1, and B2, changes in vegetation type and the leaf area index (LAI) were simulated using a Lund-Potsdam-Jena-Dynamic Global Vegetation Model (LPJ-DGVM) and Terrestrial Biogeochemical Cycle Model (BIOME-BGC). The estimated LAI was then used in the rainfall-runoff analysis in the Yamanashi Distributed Hydrological Model (YHyM). The simulation results indicated a significant change in vegetation type mainly on the Tibetan Plateau and in mountainous areas, with the degree of change differing for each SRES scenario; LAI increases around the edge of the Tibetan Plateau and decreases in the lower reaches of the basin; and more conspicuous changes in river discharge in upstream areas than in the middle to lower reaches, mainly due to increases in precipitation in the plateau region. After the 2050s, the results suggested changes in river discharge will be slowed due to changes in evapotranspiration. Copyright © 2008 John Wiley & Sons, Ltd. [source] |