Home About us Contact | |||
Wall Appositions (wall + apposition)
Kinds of Wall Appositions Selected AbstractsImmunolocalization of 1,3-,-Glucanases Secreted by Gaeumannomyces graminis var. tritici in Infected Wheat RootsJOURNAL OF PHYTOPATHOLOGY, Issue 5 2010Yongting Yu Abstract The distribution of extracellular 1,3-,-glucanase secreted by Gaeumannomyces graminis var. tritici (Ggt) was investigated in situ in inoculated wheat roots by immunogold labelling and transmission electron microscopy. Antiserum was prepared by subcutaneously injecting rabbits with purified 1,3-,-glucanase secreted by the pathogenic fungus. A specific antibody of 1,3-,-glucanase, anti-GluGgt, was purified and characterized. Double immunodiffusion tests revealed that the antiserum was specific for 1,3-,-glucanase of Ggt, but not for 1,3-,-glucanase from wheat plants. Native polyacrylamide gel electrophoresis of the purified and crude enzyme extract and immunoblotting showed that the antibody was monospecific for 1,3-,-glucanase in fungal extracellular protein populations. After incubation of ultrathin sections of pathogen-infected wheat roots with anti-1,3-,-glucanase antibody and the secondary antibody, deposition of gold particles occurred over hyphal cells and the host tissue. Hyphal cell walls and septa as well as membranous structures showed regular labelling with gold particles, while few gold particles were detected over the cytoplasm and other organelles such as mitochondria and vacuoles. In host tissues, cell walls in contact with the hyphae usually exhibited a few gold particles, whereas host cytoplasm and cell walls distant from the hyphae were free of labelling. Furthermore, over lignitubers in the infected host cells labelling with gold particles was detected. No gold particles were found over sections of non-inoculated wheat roots. The results indicate that 1,3-,-glucanase secreted by Ggt may be involved in pathogenesis of the take-all fungus through degradation of callose in postinfectionally formed cell wall appositions, such as lignitubers. [source] Studies on Symptom Development, Phenolic Compounds and Morphological Defence Responses in Wheat Cultivars Differing in Resistance to Fusarium Head BlightJOURNAL OF PHYTOPATHOLOGY, Issue 4-5 2002E. SIRANIDOU Abstracts Development of Fusarium head blight, caused by Fusarium culmorum, was evaluated in seven winter wheat cultivars and one spring wheat cultivar in an outdoor pot experiment. Of the cultivars studied, only the spring wheat cultivar Frontana exhibited resistance against initial infection by the fungus. Significantly higher amounts of free phenolic compounds were found in the glumes, lemmas and paleas of Frontana prior to and at all sampling times after inoculation, in comparison to the winter wheat cultivar Agent. Furthermore, the amount of p -coumaric acid increased significantly in the glumes, lemmas and paleas of the cultivar Frontana 2 days after inoculation compared to that in uninoculated spike tissues. However, the amounts of ferulic acid between inoculated and healthy plant tissues did not differ. Ultrastructural studies indicated more pronounced structural defence responses, such as cell wall appositions, in the infected lemma tissue of the resistant cultivar Frontana compared with the susceptible Agent 3 days after inoculation. Immunogold labelling of lignin revealed no differences in the density of gold particles on the cell walls of healthy lemma tissue in the two cultivars. However, density of particles increased in the infected lemma tissue of the resistant cultivar Frontana on cell walls adjacent to the fungal cells, 3 days after inoculation. The susceptible cultivar Agent showed little or no response to the infection. Phenolic compounds appear to play a role in the resistance of the cultivar Frontana to F. culmorum. [source] Non-host resistance of barley is associated with a hydrogen peroxide burst at sites of attempted penetration by wheat powdery mildew fungusMOLECULAR PLANT PATHOLOGY, Issue 4 2001Ralph Hückelhoven Summary In barley, non-host resistance against the wheat powdery mildew fungus (Blumeria graminis f.sp. tritici, Bgt) is associated with the formation of cell wall appositions and a hypersensitive reaction in which epidermal cells die rapidly in response to fungal attack. In the interaction of barley with the pathogenic barley powdery mildew fungus (Blumeria graminis f.sp. hordei, Bgh), these defence reactions are also associated with accumulation of H2O2. To elucidate the mechanism of non-host resistance, the accumulation of H2O2 in response to Bgt was studied in situ by histochemical staining with diaminobenzidine. H2O2 accumulation was found in cell wall appositions under appressoria from Bgt and in cells undergoing a hypersensitive reaction. A mutation (mlo5) at the barley Mlo locus, that confers broad spectrum resistance to Bgh, did not influence the barley defence phenotype to Bgt. Significantly, Bgt triggered cell death on mlo5 -barley while Bgh did not. [source] Multivesicular compartments proliferate in susceptible and resistant MLA12 -barley leaves in response to infection by the biotrophic powdery mildew fungusNEW PHYTOLOGIST, Issue 3 2006Qianli An Summary ,,There is growing evidence that multivesicular bodies and cell wall-associated paramural bodies participate in the enhanced vesicle trafficking induced by pathogen attack. ,,Here, we performed transmission electron microscopy in combination with cytochemical localization of H2O2 to investigate multivesicular compartments during establishment of compatible interaction in susceptible barley (Hordeum vulgare) and during hypersensitive response in resistant MLA12 -barley infected by the barley powdery mildew fungus (Blumeria graminis f. sp. hordei). ,,Multivesicular bodies, intravacuolar vesicle aggregates and paramural bodies proliferated in the penetrated epidermal cell during development of the fungal haustorium. These vesicular structures also proliferated at the periphery of intact cells, which were adjacent to the hypersensitive dying cells and deposited cell wall appositions associated with H2O2 accumulation. All plasmodesmata between intact cells and hypersensitive cells were constricted or blocked by cell wall appositions. ,,These results suggest that multivesicular compartments participate in secretion of building blocks for cell wall appositions not only to arrest fungal penetration but also to contain hypersensitive cell death through blocking plasmodesmata. They may also participate in internalization of damaged membranes, deleterious materials, nutrients, elicitors and elicitor receptors. [source] |