Wave Breaking (wave + breaking)

Distribution by Scientific Domains


Selected Abstracts


Simulation technique for wave generation

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 5 2003
S. Aliabadi
Abstract In this paper, we present a new finite element technique for simulation of water waves impacting on floating structures. The emphasis will be on the numerical methods for water wave generation and propagation. In our approach, the governing equations are the Navier,Stokes equations written for two incompressible fluids. An interface function with two distinct values serves as a marker identifying the location of the free-surface. This function is transported throughout the computational domain with a time-dependent advection equation. The stabilized finite element formulations are written and integrated in an arbitrary Lagrangian,Eulerian domain. This allows us to handle the motion of the physical boundaries, such as the wave generator surface by moving the computational nodes. In the mesh-moving scheme, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements for each computational node. The numerical examples include 3D wave generation and wave breaking as they approach the coast, and the waves impacting on near-shore support columns. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Depth-integrated, non-hydrostatic model for wave breaking and run-up

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2009
Yoshiki Yamazaki
Abstract This paper describes the formulation, verification, and validation of a depth-integrated, non-hydrostatic model with a semi-implicit, finite difference scheme. The formulation builds on the nonlinear shallow-water equations and utilizes a non-hydrostatic pressure term to describe weakly dispersive waves. A momentum-conserved advection scheme enables modeling of breaking waves without the aid of analytical solutions for bore approximation or empirical equations for energy dissipation. An upwind scheme extrapolates the free-surface elevation instead of the flow depth to provide the flux in the momentum and continuity equations. This greatly improves the model stability, which is essential for computation of energetic breaking waves and run-up. The computed results show very good agreement with laboratory data for wave propagation, transformation, breaking, and run-up. Since the numerical scheme to the momentum and continuity equations remains explicit, the implicit non-hydrostatic solution is directly applicable to existing nonlinear shallow-water models. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Coupled ghost fluid/two-phase level set method for curvilinear body-fitted grids

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2007
Juntao Huang
Abstract A coupled ghost fluid/two-phase level set method to simulate air/water turbulent flow for complex geometries using curvilinear body-fitted grids is presented. The proposed method is intended to treat ship hydrodynamics problems. The original level set method for moving interface flows was based on Heaviside functions to smooth all fluid properties across the interface. We call this the Heaviside function method (HFM). The HFM requires fine grids across the interface. The ghost fluid method (GFM) has been designed to explicitly enforce the interfacial jump conditions, but the implementation of the jump conditions in curvilinear grids is intricate. To overcome these difficulties a coupled GFM/HFM method was developed in which approximate jump conditions are derived for piezometric pressure and velocity and pressure gradients based on exact continuous velocity and stress and jump in momentum conditions with the jump in density maintained but continuity of the molecular and turbulent viscosities imposed. The implementation of the ghost points is such that no duplication of memory storage is necessary. The level set method is adopted to locate the air/water interface, and a fast marching method was implemented in curvilinear grids to reinitialize the level set function. Validations are performed for three tests: super- and sub-critical flow without wave breaking and an impulsive plunging wave breaking over 2D submerged bumps, and the flow around surface combatant model DTMB 5512. Comparisons are made against experimental data, HFM and single-phase level set computations. The proposed method performed very well and shows great potential to treat complicated turbulent flows related to ship flows. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Numerical modelling of free-surface flows in ship hydrodynamics

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2003
U. P. Bulgarelli
Abstract Current trends in the investigation of ship hydrodynamics are reviewed with emphasis on the problem of wave-body interaction. This includes the classical seakeeping problem and as a special case, the problem of prediction for the drag encountered by a ship advancing in calm water. Specific issues related to the numerical treatment of the air,water interface are examined, with emphasis on the modelling of wave breaking. The discussion on the large-scale modelling of the flow around ships is focused on the prediction of wave loads, ship motions and resistance in calm water. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Synoptic scale wave breaking and its potential to drive NAO-like circulation dipoles: A simplified GCM approach

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 638 2009
Torben Kunz
Abstract Recent studies suggest a synoptic view of the North Atlantic oscillation (NAO) with its positive (negative) phase being the remnant of anticyclonic (cyclonic) synoptic scale wave breaking. This study examines the potential of anticyclonic (AB) and cyclonic wave breaking (CB) to drive NAO-like meridional circulation dipoles by investigating the synoptic evolution of AB and CB events in a mid-latitude eddy-driven jet in a simplified GCM with zonally uniform basic state. First, a method for the detection of such events from daily isentropic maps of potential vorticity and horizontal deformation is constructed. Then, from the obtained sample of events AB- and CB-composites of the upper and lower tropospheric flow are computed, and a distinct spatial and temporal asymmetry in the response to AB and CB events is found. While from the interaction of two AB events (with a mean lifetime of 2.6 days) a strong and short-lived positive phase NAO-like dipole is produced at the surface but not at upper levels, single CB events (4.3 days) are found to drive a strong and more persistent negative phase NAO-like dipole at upper levels but not at the surface. It is concluded that AB (CB) is not capable of driving a positive (negative) phase NAO-like dipole individually. However, the results suggest that equivalent barotropic NAO-like variability may arise from the successive occurrence of AB and CB events. Further, a sensitivity to the strength of the stratospheric polar vortex is found with more (less) frequent AB (CB) events under strong vortex conditions. Copyright © 2009 Royal Meteorological Society [source]


Do transient gravity waves in a shear flow break?

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 634 2008
M. Pulido
Abstract The propagation of transient gravity waves in a shear flow towards their critical levels is examined using a ray tracing approximation and a higher-degree (quasi-optic) approximation. Because of its transient forcing, the amplitude of transient waves decays to zero in the neighbourhood of the critical region so that it is not clear whether transient gravity waves will reach the convective instability threshold or not. The analysis shows that the horizontal perturbation decays asymptotically as the inverse of the square root of time, while the vertical wavenumber depends linearly on time, thus transient gravity waves attain convective instability for long times. The theoretical results are compared with numerical simulations. The ray path approximation is not able to reproduce the maximum amplitude, but the quasi-optic approximation gives a reasonable agreement at short and long times. There are three breaking regimes for transient gravity waves. For wave packets with a narrow frequency spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave breaking is similar to the abrupt monochromatic wave overturning. On the other hand, highly transient wave packets will dissipate near the critical region for very long times with small wave amplitudes and high vertical wavenumber. The third regime is a transition between the two extremes; in this case both wave amplitude and vertical wavenumber are important to produce the convective threshold. The dependencies of the convective instability height (a quantity that may be useful for gravity wave parametrizations) on the Richardson number and the frequency spectral width are obtained. Copyright © 2008 Royal Meteorological Society [source]


Numerical simulation of pulsations in the bora wind

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 627 2007
Danijel Belu
Abstract Numerical simulation of a long bora episode is presented and compared with measurements. The goal is to resolve the quasi-periodic oscillations of the bora gusts, i.e. the pulsations. The model reproduced well the approximately 7 min periodicity of pulsations and the upstream structure of the atmosphere, and can thus be used for the detailed dynamical considerations. The results of previous studies are confirmed, as well as the hypotheses on the mechanisms responsible for the disappearance of pulsations. Specifically, it is shown that the upper-tropospheric jet induces strong positive shear throughout the troposphere and consequently the local nonlinearity of the incoming flow weakens. Henceforth, the low-level wave breaking is diminished and so the pulsations cease. From the three previously proposed generating mechanisms of pulsations, the results obtained point to the Kelvin,Helmholtz instability as the primary mechanism in this case. Additionally, it seems that the situations with absence of pulsations may be related to the formation of the mountain-wave-induced rotor. Copyright © 2007 Royal Meteorological Society [source]


Boundary-layer variations due to orographic-wave breaking in the presence of rotation

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 603 2004
B. Grisogono
Abstract A mesoscale numerical model is used to study the atmospheric boundary-layer (ABL) response to nonlinear orographic forcing with Coriolis effect, f, over a mountain with length (the cross-wind component) comparable to the Rossby radius of deformation, LR. The orographic-wave breaking occurring for Froude number Fr<1, affected by f>0, intensifies on the northern flank for westerly flows, as also found in other recent studies. A cumulative effect occurs as the Coriolis force lifts the northern ABL top and generates a stronger low-level jet (LLJ) than on the southern side. A differential layering also appears, since the specific humidity is higher in the lower southern ABL than in the related northern ABL, and vice versa. By contrast, there are higher values of the turbulent kinetic energy and humidity in the upper northern ABL. The breaking of flow symmetry around the orography due to f changes both the vertical vorticity and horizontal divergence field, (,, D), it modulates eddies and turbulence leading to the differential layering of the ABL. The stronger northern LLJ and its weaker southern counterpart, both meandering, together with the asymmetric wave breaking, induce strong lee-side fluctuations of the (,, D) field in the presence of f. The enhanced (,, D) production due to wave breaking over the distance , LR, the primary atmosphere,orography resonance occurs mainly in the vertical, while the ,f -enhancement' occurs in the horizontal plane. In this way, the initial mesoscale forcing may extend its effects over the synoptic scale. Copyright © 2004 Royal Meteorological Society [source]


Quasi-periodic bora gusts related to the structure of the troposphere

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 598 2004
Danijel Belu
Abstract This study provides a new insight into the behaviour of the bora wind gusts. Wind speed and direction measured with a 1 s sampling interval between 1 December 2001 and 31 January 2002 at Senj (east Adriatic) provided a sufficiently large database for a study of the gusts behaviour. The performed spectral analysis confirmed the occurrence of pulsations in the bora flow. Moreover, a new type of dynamics, involving the onset, cessation and reappearance of the pulsations within a single episode, has been observed in several cases. Suggested mechanisms responsible for generating these phenomena have been determined from comparisons of surface wind data with the upstream tropospheric thermodynamical structure derived from Zagreb radiosonde data. In particular, it has been shown that the appearance of an upper-tropospheric jet stream results in cessation of the pulsations, and the decrease in the jet stream supports quasi-periodic gust behaviour. As the pulsations are generated by wave breaking, the jet stream appearance has been related to the disappearance of the wave-breaking region in the lee of the mountain, which is in accordance with previous studies of downslope windstorms. Copyright © 2004 Royal Meteorological Society. [source]


The parametrization of drag induced by stratified flow over anisotropic orography

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 568 2000
J. F. Scinocca
Abstract A new parametrization of drag arising from the flow over unresolved topography (UT) in a general-circulation model (GCM) is presented. It is comprised of three principle components: a parametrization of the source spectrum and drag associated with freely propagating hydrostatic gravity waves in the absence of rotation, a parametrization of the drag associated with low-level wave breaking, and a parametrization of low-level drag associated with upstream blocking and lee-vortex dynamics. Novel features of the scheme include: a new procedure for defining the UT in each GCM grid cell which takes account of the GCM resolution and includes only the scales represented by the parametrization scheme, a new method of representing the azimuthal distribution of vertical momentum flux by two waves whose direction and magnitude systematically vary with the flow direction and with the anisotropy of the UT in each GCM grid cell, and a new application of form drag in the lowest levels which can change the direction of the low-level flow so that it is more parallel to unresolved two-dimensional topographic ridges. The new scheme is tested in the Canadian Centre for Climate Modelling and Analysis third generation atmospheric GCM at horizontal resolutions of T47 and T63. Five-year seasonal means of present-day climate show that the new scheme improves mean sea level pressures (or mass distribution) and improves the tropospheric circulation when compared with the gravity-wave drag scheme used currently in the GCM. The benefits are most pronounced during northern hemisphere winter. It is also found that representing the azimuthal distribution of the momentum flux of the freely propagating gravity-wave field with two waves rather than just one allows 30-50% more gravity-wave momentum flux up into the middle atmosphere, depending on the season. The additional momentum flux into the middle atmosphere is expected to have a beneficial impact on GCMs that employ a more realistic representation of the stratosphere. [source]