Home About us Contact | |||
Below-ground Resources (below-ground + resource)
Selected AbstractsResource and non-resource root competition effects of grasses on early- versus late-successional treesJOURNAL OF ECOLOGY, Issue 3 2009Christian Messier Summary 1This study assessed the effects of resource (i.e. nutrients) and non-resource (i.e. interference for space) competition from fine roots of competing grasses on the growth, morphology and architecture of fine roots of four tree species of varying successional status: Populus deltoides „ P. balsamifera (a hybrid), Betula papyrifera, Acer saccharum and Fraxinus americana. We tested the general hypothesis that tree fine-roots are affected by both below-ground resource and non-resource competition from non-self plants, and the more specific hypothesis that this effect is stronger in early-successional tree species. 2The experiment was conducted in split-containers where half of the roots of tree seedlings experienced either below-ground resource competition or non-resource competition, or both, by grasses while the other half experienced no competition. 3The late-successional tree species A. saccharum and F. americana were mostly affected by resource competition, whereas the early-successional P. deltoides„balsamifera and B. papyrifera were strongly affected by both resource and non-resource competition. Non-resource competition reduced fine-root growth, root branching over root length (a measure of root architecture) and specific root length (a measure of root morphology) of both early-successional species. 4Synthesis. This study suggests that early-successional tree species have been selected for root avoidance or segregation and late-successional tree species for root tolerance of competition as mechanisms to improve below-ground resource uptake in their particular environments. It also contradicts recent studies showing perennial and annual grasses tend to overproduce roots in the presence of non-self conspecific plants. Woody plants, required to grow and develop for long periods in the presence of other plants, may react differently to non-self root competition than perennial or annual grasses that have much shorter lives. [source] Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic liftECOLOGY LETTERS, Issue 8 2004F. Ludwig Abstract Under large East African Acacia trees, which were known to show hydraulic lift, we experimentally tested whether tree roots facilitate grass production or compete with grasses for below-ground resources. Prevention of tree,grass interactions through root trenching led to increased soil water content indicating that trees took up more water from the topsoil than they exuded via hydraulic lift. Biomass was higher in trenched plots compared to controls probably because of reduced competition for water. Stable isotope analyses of plant and source water showed that grasses which competed with trees used a greater proportion of deep water compared with grasses in trenched plots. Grasses therefore used hydraulically lifted water provided by trees, or took up deep soil water directly by growing deeper roots when competition with trees occurred. We conclude that any facilitative effect of hydraulic lift for neighbouring species may easily be overwhelmed by water competition in (semi-) arid regions. [source] Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signatureFUNCTIONAL ECOLOGY, Issue 1 2005K. JOHNSEN Summary 1In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of mid-rotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol,1 atmospheric CO2 for 31 months. 2Tank CO2 was depleted in atmospheric 13C; foliage of elevated CO2 trees had ,13C of ,42·9, compared with ,29·1 for ambient CO2 trees. 3Roots 1 m from the base of elevated CO2 -grown trees had more negative ,13C relative to control trees, and this difference was detected, on average, up to 5·8, 3·7 and 3·7 m away from the trees for 0,2, 2,5 and >5 mm root-size classes, respectively. Non-fertilized tree roots extended as far as fertilized trees despite the fact that their above-ground biomass was less than half that of fertilized trees. 4These results are informative with respect to root sampling intensity and protocol, and the distances required between experimental manipulations to evaluate below-ground processes of independent treatments. 5Fine-root turnover has usually been estimated to range from weeks to 3 years, representing a major avenue of carbon flux. Using a mixing model we calculated that 0,2 mm roots had a mean residence time of 4·5 years indicating relatively slow fine-root turnover, a result that has major implications in modelling C cycling. [source] Winners and losers in herbaceous plant communities: insights from foliar carbon isotope composition in monocultures and mixturesJOURNAL OF ECOLOGY, Issue 6 2005A. JUMPPONEN Summary 1We established monocultures and 16 unique mixed communities of 12 native grasses, legumes and non-N2 -fixing forbs. We identified species having a greater or lesser yield in the mixed communities than expected from monoculture data as winners and losers, respectively. To test our hypothesis that performance of the subordinate species (losers) is mainly controlled by light availability, whereas the dominant species (winners) are sensitive to the availability of below-ground resources, we traced the effects of number of species, light transmission in the community and foliar N concentration on plant photosynthesis through leaf C isotope composition (,13C). 2Phalaris arundinacea and Phleum pratense, the two tallest grass species, yielded more in mixtures than expected, as, initially, did Dactylis glomerata. Festuca ovina, the smallest grass, and Ranunculus acris, a forb, had smaller yield in mixtures than expected. For most species, observed mixture yields did not deviate significantly from those expected. 3Decreases in transmitted light decreased ,13C in D. glomerata, Lotus corniculatus and Rumex acetosa. The ,13C of Trifolium pratense and L. corniculatus was affected by increasing number of species in the plant community even after accounting for the transmitted light. In P. arundinacea, ,13C increased with increasing foliar %N, as expected for the tallest, dominant species. 4Species showing a positive, significant relationship between ,13C and transmitted light were relatively low growing and unable to establish dominance in multispecies communities due to shading by larger dominants. 5We conclude that above-ground competition is crucial in determining C isotope composition among the subordinate species, whereas the dominant species are more strongly affected by below-ground resources. Different factors thus dictate the physiological performance of species according to the size-distribution hierarchy in the community. [source] Changes in plant interactions along a gradient of environmental stressOIKOS, Issue 1 2001Francisco I. Pugnaire A combination of competition and facilitation effects operating simultaneously among plant species appears to be the rule in nature, where these effects change along productivity gradients often in a non-proportional manner. We investigated changes in competition and facilitation between a leguminous shrub, Retama sphaerocarpa, and its associate understorey species along an environmental gradient in semi-arid southeast Spain. Our results show a change in the net balance of the interaction between the shrub and several of its associated species, from clearly positive in the water-stressed, infertile environment to neutral or even negative in the more fertile habitat. There was a weakening of facilitation along the fertility gradient as a consequence of improved abiotic conditions. Competition was the most intense for below-ground resources in the less fertile environment while total competition tended to increase towards the more productive end of the gradient. Changes in the balance of the interaction between and among different plant species along the gradient of stress were caused by a decline in facilitation rather than by a change in competition. As both competition intensity and facilitation change along gradients of resource availability, plant interactions are best viewed as dynamic relationships, the outcome of which depends on abiotic conditions. [source] Radial growth responses to gap creation in large, old Sequoiadendron giganteumAPPLIED VEGETATION SCIENCE, Issue 4 2010Robert A. York Abstract Questions: Do large, old Sequoiadondron giganteum trees respond to the creation of adjacent canopy gaps? Do other co-occurring tree species and younger S. giganteum adjacent to gaps also respond? What are the likely factors affecting growth responses? Location: Mixed-conifer forests of the southern Sierra Nevada, California, USA. Methods: We measured the growth response of large, old S. giganteum trees (mean DBH=164 cm; ages estimated >1000 yr) to gap creation by coring trees and comparing growth after gap creation to growth before gap creation. We also measured young Abies concolor, Pinus lambertiana, and young S. giganteum. Gap-adjacent trees were compared with non-adjacent reference trees. Tree rings were analysed for carbon isotope discrimination and for longer-term growth trend correlations with climate. Results: Following gap creation gap-adjacent old S. giganteum grew more than reference trees. Abies concolor trees also exhibited a growth response to gap creation. No response was detected for young S. giganteum or P. lambertiana, although detection power was lower for these groups. There was no difference in carbon isotope discrimination response to gap creation between gap-adjacent and reference trees for old S. giganteum and radial growth was positively correlated with winter precipitation, but not growing season temperature. Conclusion: It is unclear what caused the growth release in old S. giganteum trees, although liberation of below-ground resources following removal of competing vegetation appears to be a significant contributor. Sequoiadondron giganteum, the third-longest lived and the largest of all species, remains sensitive to local environmental changes even after canopy emergence. Management activities that reduce vegetation surrounding individual specimen trees can be expected to result in increased vigor of even these very old and large trees. [source] |