Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Wt.

  • body wt.

  • Selected Abstracts

    Human soleus muscle protein synthesis following resistance exercise

    ACTA PHYSIOLOGICA, Issue 2 2004
    T. A. Trappe
    Abstract Aim:, It is generally believed the calf muscles in humans are relatively unresponsive to resistance training when compared with other muscles of the body. The purpose of this investigation was to determine the muscle protein synthesis response of the soleus muscle following a standard high intensity bout of resistance exercise. Methods:, Eight recreationally active males (27 ± 4 years) completed three unilateral calf muscle exercises: standing calf press/heel raise, bent-knee calf press/heel raise, and seated calf press/heel raise. Each exercise consisted of four sets of 15 repetitions (,15 repetition maximum, RM, or ,70% 1RM). Fractional rate of muscle protein synthesis (FSR) was determined with a primed constant infusion of [2H5]phenylalanine coupled with muscle biopsies immediately and 3 h following the exercise in both the exercise and non-exercise (resting control) leg. Results:, FSR was elevated (P < 0.05) in the exercise (0.069 ± 0.010) vs. the control (0.051 ± 0.012) leg. Muscle glycogen concentration was lower (P < 0.05) in the exercise compared with the control leg (Decrease from control; immediate post-exercise: 54 ± 5; 3 h post-exercise: 36 ±4 mmol kg,1 wet wt.). This relatively high amount of glycogen use is comparable with previous studies of resistance exercise of the thigh (i.e. vastus lateralis; ,41,49 mmol kg,1 wet wt.). However, the exercise-induced increase in FSR that has been consistently reported for the vastus lateralis (,0.045,0.060% h,1) is on average ,200% higher than reported here for the soleus (0.019 ± 0.003% h,1). Conclusions:, These results suggest the relatively poor response of soleus muscle protein synthesis to an acute bout of resistance exercise may be the basis for the relative inability of the calf muscles to respond to resistance training programs. [source]

    A Microbial Biosensor for p -Nitrophenol Using Arthrobacter Sp.

    ELECTROANALYSIS, Issue 14 2003
    Yu Lei
    Abstract This article reports the construction, optimization of performance variables and analytical characterization of a sensitive and selective microbial amperometric biosensor for measurement of p -nitrophenol (PNP), a U.S. Environmental Agency priority pollutant. The biosensor consisted of PNP-degrading/oxidizing bacteria Arthrobacter sp. JS443 as biological sensing element and a dissolved oxygen electrode as the transducer. The best sensitivity and response time were obtained using a sensor constructed with 1.2,mg dry wt. of cells and operating in pH,7.5, 50,mM citrate-phosphate buffer. Using these conditions, the biosensor was able to measure as low as 28,ppb (0.2,,M) of PNP selectively without interference from structurally similar compounds, such as phenol, nitrophenols and chlorophenols. The service life of the microbial biosensor is around 5,days when stored in the operating buffer at 4,°C. The applicability to lake water is demonstrated. [source]

    Hydrophobic pervaporation for environmental applications: Process optimization and integration

    Frank Lipnizki
    The focus of this paper is on the design of pervaporation units for wastewater treatment taking into account technical, economic, and environmental aspects. Two different sized industrial wastewater streams of water-chloroform, and of water-methyl-isobutylketone (MIBK) are considered. Based on a wastewater stream of 1,500 kg/d, a semi-batch process combining pervaporation with a decanter recycle loop is developed. Using this process, it is possible to recover over 99% of the organic components at concentrations of more than 98 wt. %. The treatment costs are between 0.11 to 0.16 $/kg wastewater. For the treatment of a wastewater stream of 1,000 kg/h, pervaporation combined with a decanter and recycling loop, as well as integrated in a hybrid process with adsorption, is considered. For MIBK, pervaporation with a decanter is the most attractive option taking economic and environmental aspects into account, while, for chloroform, the hybrid process is the better option. Treatment costs in all cases are about 0.03 $/kg wastewater. The recovery rate of the organic compounds is over 99% at concentrations over 98 wt. %. The authors concluded that pervaporation as a stand-alone unit, or integrated into hybrid processes, offers significant advantages over conventional alternatives. [source]

    Distribution of degradation products of alkylphenol ethoxylates near sewage treatment plants in the lower Great Lakes, North America

    Erin R. Bennett
    Abstract Degradation of alkylphenol ethoxylate (APEO) surfactants in the environment leads to the formation of relatively hydrophobic compounds such as nonylphenol (NP), octylphenol (OP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) that have been shown to have estrogenic activity. Previous studies have shown that sewage treatment plants (STPs) are point sources for these compounds in the aquatic environment. We collected sediment samples at several sites in the vicinity of STPs in Hamilton Harbour and in the Detroit River to determine the spatial distribution of the degradation products of APEOs. In addition, we deployed semipermeable membrane devices (SPMDs) and caged freshwater mussels (Elliptio complanata) at these locations to determine the distribution of these compounds in the dissolved phase and their potential to bioaccumulate in aquatic organisms. The NP, OP, NP1EO, and NP2EO were found at ,g/g (dry wt.) concentrations in sediments and accumulated to ng/g (wet wt.) concentrations in caged mussels near the STPs. However, in the Detroit River, the concentrations of these compounds declined to near background levels in the sediments, water column (i.e., SPMDs), and biota at stations about 1 km downstream from STPs. At stations in Hamilton Harbour, concentrations of APEO degradation products also declined markedly in sediments and SPMDs located a few hundred meters from the STP. These data indicate that degradation products of APEOs can be accumulated by biota near STPs. However, the environmental distribution of these compounds is localized to areas close to the point of discharge. [source]

    Pyridine Carboxylate Complexes of MoII as Active Catalysts in Homogeneous and Heterogeneous Polymerization

    Maria Vasconcellos-Dias
    Abstract New lamellar materials intercalated with molybdenum(II) complexes with potential catalytic properties were prepared by a stepwise procedure. The lamellar material was first calcined at 823 K for four hours to eliminate all the carbonate ions; the layered structure was reconstructed after treatment with a solution of either pycH (pyridine-2-carboxylic acid) or pydcH2 (pyridine-2,6-dicarboxylic acid) in a KOH solution of dmf at 343 K. Impregnation with a solution of the organometallic precursor [Mo(CO)3I2(NCCH3)2] led to substitution of the nitrile groups by two pyridine ligands. All the materials were characterized by powder X-ray diffraction, FTIR, and 13C CP MAS and 27Al MAS solid-state NMR spectroscopy. Similar MoII complexes were also prepared by using pycH or pydcH2 and characterized by elemental analysis as well as FTIR and 1H and 13C solution NMR spectroscopy. These new materials and the complexes of pyc or pydc ligands containing 4.54 wt.-% and 6.33 wt.-% of Mo respectively, catalyze the ring-opening-metathesis polymerization of norbornene and the polymerization of styrene at 333 K, their performance increasing upon the addition of methylalumoxane (MAO) as cocatalyst.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]

    Incorporation of a (Cyclopentadienyl)molybdenum Oxo Complex in MCM-41 and Its Use as a Catalyst for Olefin Epoxidation

    Marta Abrantes
    Abstract The tricarbonyl complex [(,5 -C5H4 -COOMe)Mo(CO)3Cl] was prepared from the reaction of sodium (methoxycarbonyl)cyclopentadienide, (C5H4 -CO2Me)Na, with (Bu4N)[Mo(CO)5I]. Heating the ester with 3-(triethoxysilyl)propylamine gave the amide derivative {[,5 -C5H4 -CONH-C3H6Si(OEt)3]Mo(CO)3Cl}. The functionalised tricarbonyl complex was immobilised in the ordered mesoporous silica MCM-41 with a loading of 13 wt.-% Mo (1.4 mmol·g,1) by carrying out a grafting reaction in dichloromethane. Powder X-ray diffraction and nitrogen adsorption,desorption analysis indicated that the structural integrity of the support was preserved during the grafting and that the channels remained accessible, despite significant reductions in surface area, pore volume and pore size. The success of the coupling reaction was confirmed by 29Si and 13C (CP) MAS NMR spectroscopy. A supported dioxo complex of the type [(,5 -C5H4R)MoO2Cl] was subsequently prepared by oxidative decarbonylation of the tethered tricarbonyl complex using tert -butyl hydroperoxide (TBHP). The oxidised material is an active catalyst for the liquid phase epoxidation of cyclooctene with TBHP as the oxygen source. Similar catalytic results were obtained using the tethered tricarbonyl complex directly as a pre-catalyst since fast oxidative decarbonylation occurs under the reaction conditions used. For both systems, the desired epoxide was the only product and the initial activities were about 13 mol·molMo,1·h,1. The solid catalysts were recycled several times. Some activity was lost between the first and second runs but thereafter tended to stabilise. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]

    Reaction of Mercury(0) with the I2 Adduct of Tetraphenyldithioimidodiphosphinic Acid (SPPh2)2NH (HL) , Crystal Structures of [Hg(HL)I2] and HgL2

    M. Carla Aragoni
    Abstract The complex [Hg(HL)I2] (1) has been synthesised by reacting liquid Hg(0) in Et2O under mild reaction conditions with the I2 adduct of HL, HL·I2, while HgL2 (2) has been obtained from the reaction of compound 1 with HL in CH3CN. A single-crystal X-ray investigation of 1 shows four independent molecules in the asymmetric unit, each of which contains an HgII ion coordinated to two iodine atoms and two sulfur atoms of one bidentate neutral ligand in a distorted tetrahedral coordination geometry. Compound 2 consists of two anionic ligands coordinated to an HgII ion, which again displays a distorted tetrahedral coordination sphere. The reaction of 2 with HI (55 wt.-% in water) affords [Hg(HL)2](I)2 (3). Compounds 1, 2, and 3 have been characterised by FT-IR and 31P NMR spectroscopy. Density functional calculations suggest that compound 3 should feature a distorted tetrahedral coordination around the metal centre, with unequal Hg,S bond lengths. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]

    Effect of Decrease of Hydride-Induced Embrittlement in Nanocrystalline Titanium,

    M.A. Murzinova
    Abstract The room-temperature impact toughness, strength and ductility of nanocrystalline (NC) and microcrystalline (MC) titanium with hydrogen content ranging from 0.1 to 16,at.-% (0.002 to 0.450,wt.-%) are studied. NC titanium has higher strength and lower sensitivity to hydride-induced brittle fracture than the MC material. In contrast to MC titanium, the elongation and impact toughness in the NC material does not decrease dramatically with increasing hydrogen content. Moreover, the fracture toughness in hydrogenated NC condition is found to be higher than that in MC titanium. This unusual result may be associated with the precipitation of equiaxial nanoscale hydrides in the interior of ,-grains in the NC material, while platelet hydrides are formed in MC titanium. One can expect that the risk of hydride-induced embrittlement is lower in NC than in MC titanium, making the NC material attractive for potential application under conditions that may cause hydrogen saturation above the permissible level for MC titanium. [source]

    Fabrication and Microstructure of C/Cu Composites,

    Yiwen Liu
    C/Cu composites were prepared by a melting infiltration technique in vacuum. In order to improve the wettability between Cu and carbon fibers, Ti (8,wt.-%) and Cr (1,wt.-%) were added to the Cu alloy. Microstructures of the composites and interface between C and Cu were investigated by XRD, SEM, EDS and HRTEM. The results show that the Ti and Cr improved the wettability between Cu and CC preform and the infiltration ability of Cu into CC preform greatly. The prepared C/Cu composites are characterized as having good interface bonding and high density. In the process of infiltration, Ti and Cr concentrate on the boundary of carbon fiber. Formation of TiC results from the reaction of Ti and C between Cu and carbon fiber. [source]

    An X-ray Spectromicroscopy Study of Albumin Adsorption to Crosslinked Polyethylene Oxide Films,

    Bonnie O. Leung
    Abstract Synchrotron-based X-ray photoemission electron microscopy (X-PEEM) is used to characterize the near surface composition of polyethylene oxide (PEO) combined with 1.5, 5, and 10,wt.-% pentaerythritol triacrylate (PETA) crosslinker. It is found that as the concentration of PETA increases, it becomes the dominant component in the top 10,nm of the film surface. The same surfaces are also exposed to human serum albumin (HSA) and the distributions of the protein relative to PEO and PETA measured with X-PEEM. A positive correlation is found between levels of PETA and HSA at the surface. Above PETA concentrations of 5,wt.-%, HSA adsorption is significant, which suggests high levels of PETA (often used to immobilize PEO by crosslinking) can significantly reduce the non-fouling properties of PEO. [source]

    Oriented Grain Growth Analyses With In Situ Annealing Experiments Using High Energy Synchrotron Radiation

    Caterina Elisabetta Tommaseo
    The development of the recrystallization and annealing textures of Al,Mn alloys with 0.4, 0.7 and 1,wt.-% manganese is analyzed using specific techniques that allow the detection of changes in grain orientation during in situ annealing. In order to investigate the evolution of texture components during annealing, highly rolled samples were annealed from room temperature to 500,°C at a constant heating rate. The advantage of in situ annealing experiments using synchrotron radiation is the detection of grain orientations over time, which allows observation of the development of the recrystallization and annealing textures in a sample. In fact, the recrystallization and annealing textures in the Al,0.4Mn are characterized by an interruption in the detection of most of the grain orientations between 380 and 425,°C and by competition between the cube {001}<100>, {011}<1-33>, {011}<0-11> and rotated-cube {001}<110> grain orientations, where the latter is detected until the end of the experiment. In the Al,0.7Mn sample a competition between the cube {001}<100>, {011}<100>, and rotated cube {001}<110>, {011}<0,11> grain orientations is observed. In the sample with the highest manganese concentration (1,wt.-%) an unhindered grain growth of all possible grain orientations with a high amount of the {011}<0-11> grain orientation is observed. The evolution of the resulting local textures is discussed in terms of preferentially oriented grain growth depending on the temperature and manganese concentration. [source]

    Chemo-, Regio- and Stereospecific Synthesis of Unnatural, Fluorescent Amino Acids by Condensation of L -Lysine and 1-Vinylpyrrole-2-carbaldehydes

    Andrey V. Ivanov
    Abstract A new family of unnatural, optically active amino acids containing the pyrrole moiety have been synthesized by condensation of 1-vinylpyrrole-2-carbaldehydes with L -lysine under mild conditions (EtOH, room temp., 2.5,3 h, 0.5 wt.-% of CF3CO2H) in up to 90,% yields. Unlike non-vinylated analogues, 1-vinylpyrrole-2-carbaldehydes react chemo-, regio- and stereospecifically with an ,-amino group only to afford products of exclusively (E) configuration. The amino acids synthesized containing aromatic or condensed aromatic substitutents in the pyrrole ring fluoresce in the UV/Vis region (,max = 350,382 nm, Stokes shifts 6150,7800 cm,1). [source]

    Molecular Tailored Histidine-Based Complexing Surfactants: From Micelles to Hydrogels

    Patrick Gizzi
    Abstract Novel histidine-based complexing surfactants, designed as AA-His-EOm -Cn, containing trifunctional moduli (peptidic/hydrophilic/hydrophobic) were synthesized by a modular step-by-step procedure, which allowed easy structural changes, and consequently correlations between their molecular structures and their self-assembling properties could be established. Thus, micelles or hydrogels could be obtained by simply modifying the hydrophobic tail lengths or the junction between the different moduli of the designed compounds. At low pH values, all compounds were surface active in aqueous solutions. At higher pH values, in the range 8,10, micellization took place for decyl compounds (n = 10), whereas hydrogelation occurred for longer chain lengths (n = 12, 14), and this, at very-low concentrations of surfactant (<0.3 wt.-%), could thus act as low molecular weight gelator (LMWG). The driving forces for gel formation were noncovalent intermolecular interactions such as ,-stacking and hydrophobic and hydrogen-bonding interactions.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]

    Predicting Spray Processing Parameters from Required Coating Structural Attributes by Artificial Intelligence,

    A.-F. Kanta
    Predicting processing parameters to manufacture a coating with the required structural attributes is of prime interest to reduce the associate development costs. Such an approach permits, among other advantages, to select the most appropriate scheme among several possible to implement. This paper intends to present such an approach. The specific case of predicting plasma spray process parameters to manufacture a grey alumina (Al2O3 -TiO2, 13% by wt.) coating was considered. [source]

    Optimisation and Evaluation of La0.6Sr0.4CoO3,,,, Cathode for Intermediate Temperature Solid Oxide Fuel Cells

    FUEL CELLS, Issue 5 2009
    Youkun Tao
    Abstract In this work, La0.6Sr0.4CoO3,,,,/Ce1,,xGdxO2,,,, (LSC/GDC) composite cathodes are investigated for SOFC application at intermediate temperatures, especially below 700,°C. The symmetrical cells are prepared by spraying LSC/GDC composite cathodes on a GDC tape, and the lowest polarisation resistance (Rp) of 0.11,,,cm2 at 700,°C is obtained for the cathode containing 30,wt.-% GDC. For the application on YSZ electrolyte, symmetrical LSC cathodes are fabricated on a YSZ tape coated on a GDC interlayer. The impact of the sintering temperature on the microstructure and electrochemical properties is investigated. The optimum temperature is determined to be 950,°C; the corresponding Rp of 0.24,,,cm2 at 600,°C and 0.06,,,cm2 at 700,°C are achieved, respectively. An YSZ-based anode-supported solid oxide fuel cell is fabricated by employing LSC/GDC composite cathode sintered at 950,°C. The cell with an active electrode area of 4,×,4,cm2 exhibits the maximum power density of 0.42,W,cm,2 at 650,°C and 0.54,W,cm,2 at 700,°C. More than 300,h operating at 650,°C is carried out for an estimate of performance and degradation of a single cell. Despite a decline at the beginning, the stable performance during the later term suggests a potential application. [source]

    Conductivity and Methanol Permeability of Nafion,Zirconium Phosphate Composite Membranes Containing High Aspect Ratio Filler Particles,

    FUEL CELLS, Issue 4 2009
    M. Casciola
    Abstract Gels of exfoliated ,-zirconium phosphate (ZrPexf) in dimethylformamide (DMF) were used to prepare Nafion/ZrPexf composite membranes with filler loadings up to 7,wt.-% by casting mixtures of Nafion 1100 solutions in DMF and suitable amounts of 2,wt.-% ZrP gels in DMF. TEM pictures showed that the ZrPexf particles had aspect ratio of at least 20. All samples were characterised by methanol permeability (P) and through-plane (,thp) and in-plane (,inp) conductivity measurements at 40,°C and 100% RH. The methanol permeability of Nafion membranes containing in situ grown ZrP particles with low aspect ratio (Nafion/ZrPisg) was also determined. The methanol permeability and the swelling behaviour of the composite membranes turned out to be strongly dependent on the filler morphology. As a general trend, both permeability and swelling decreased according to the sequence: Nafion/ZrPisg > Nafion > Nafion/ZrPexf. The maximum selectivity (,thp/P,=,1.4,×,105,S,cm,3,s) was found for the membrane filled with 1,wt.-% ZrPexf: this value is seven times higher than that of Nafion. For the Nafion/ZrPexf membranes, the ratio ,inp/,thp increases with the filler loading, thus indicating that the preferred orientation of the ZrP sheets is parallel to the membrane surface. [source]

    SPEEK/Polyimide Blends for Proton Conductive MembranesPresented at the 1st CARISMA Conference, Progress MEA 2008, La Grande Motte, 21st,24th September 2008.

    FUEL CELLS, Issue 4 2009
    H. Maab
    Abstract A series of membranes, based on sulphonated poly(ether ether ketone) (SPEEK)/polyimide (PI) blends, was prepared at different casting conditions. They were characterised by SEM, FTIR, DMTA, DSC, TGA, water/methanol pervaporation and impedance spectroscopy. The membranes prepared at 130,°C from blends with 10, 20 and 30,wt.-% of PI are homogeneous, and the methanol permeabilities decreased from 28,×,10,10,kg,m,s,1,m,2 (plain SPEEK) to 7.21, 2.61 and 0.55,×,10,10,kg,m,s,1,m,2, respectively. This corresponds to a 4- to 57-fold methanol crossover reduction. With this improvement, by the introduction of PI, the power density of SPEEK-based membranes in DMFC tests could be greatly improved. [source]

    The Effect of Thermal Treatment on the Morphology and Charge Carrier Dynamics in a Polythiophene,Fullerene Bulk Heterojunction,

    J. Savenije
    Abstract The influence of various thermal treatment steps on the morphology and the photoconductive properties of a non-contacted, 50,nm thick blend (50:50,wt.-%) of [6,6]-phenyl C61 -butyric acid methyl ester (PCBM) and poly(3-hexyl thiophene) (P3HT) spin-coated from chloroform has been studied using transmission electron microscopy (TEM) and the electrodeless time-resolved microwave conductivity technique. After annealing the film for 5,min at 80,°C, TEM images show the formation of crystalline fibrils of P3HT due to a more ordered packing of the polymer chains. The thermal treatment results in a large increase of the photoconductivity, due to an enhancement of the hole mobility in these crystalline P3HT domains from 0.0056,cm2,V,1,s,,1 for the non-annealed sample to 0.044,cm2,V,1,s,,1 for the sample annealed at 80,°C. In contrast, the temporal shape of the photoconductivity, with typical decay half-times, ,1/2, of 1,,s for the lowest excitation intensities, is unaffected by the temperature treatment. Further annealing of the sample at 130,°C results in the formation of three different substructures within the heterojunction: a PCBM:P3HT blend with PCBM-rich clusters, a region depleted of PCBM, and large PCBM single crystals. Only a minor increase in the amplitude, but a tenfold rise of the decay time of the photoconductivity, is observed. This is explained by the formation of PCBM-rich clusters and large PCBM single crystals, resulting in an increased diffusional escape probability for mobile charge carriers and hence reduced recombination. [source]

    Transparent Nanocomposites of Radiopaque, Flame-Made Ta2O5/SiO2 Particles in an Acrylic Matrix,

    H. Schulz
    Abstract Mixed Ta2O5 -containing SiO2 particles, 6,14,nm in diameter, with closely controlled refractive index, transparency, and crystallinity are prepared via flame spray pyrolysis (FSP) at production rates of 6.7,100,g,h,1. The effect of precursor solution composition on product filler (particle) size, crystallinity, Ta dispersity, and transparency is studied using nitrogen adsorption, X-ray diffraction, optical microscopy, high-resolution transmission electron microscopy (HRTEM), and diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS). Emphasis is placed on the transparency of the composite that is made with Ta2O5/SiO2 filler and dimethylacrylate. Increasing Ta2O5 crystallinity and decreasing Ta dispersity on SiO2 decreases both filler and composite transparencies. Powders with identical specific surface area (SSA), refractive index (RI), and Ta2O5 content (24,wt.-%) show a wide range of composite transparencies, 33,78,%, depending on filler crystallinity and Ta dispersity. Amorphous fillers with a high Ta dispersity and an RI matching that of the polymer matrix lead to the highest composite transparency, 86,%. The composite containing 16.5,wt.-% filler that itself contains 35,wt.-% Ta2O5 has the optimal radiopacity for dental fillings. [source]

    Cover Picture: Structural Modifications to Polystyrene via Self-Assembling Molecules (Adv. Funct.

    Abstract The cover shows tensile failure of a sample of pure polystyrene (left), and a polystyrene sample with greater impact strength containing 1% by weight of dispersed nanoribbons (right), as reported in work by Stupp and co-workers on p.,487. The nanoribbons are formed by self-assembly of molecules known as dendron rodcoils (DRCs) in styrene monomer, resulting in the formation of a gel. This gel can then be polymerized thermally. We have previously reported that small quantities of self-assembling molecules known as dendron rodcoils (DRCs) can be used as supramolecular additives to modify the properties of polystyrene (PS). These molecules spontaneously assemble into supramolecular nanoribbons that can be incorporated into bulk PS in such a way that the orientation of the polymer is significantly enhanced when mechanically drawn above the glass-transition temperature. In the current study, we more closely evaluate the structural role of the DRC nanoribbons in PS by investigating the mechanical properties and deformation microstructures of polymers modified by self-assembly. In comparision to PS homopolymer, PS containing small amounts (,,1.0,wt.-%) of self-assembling DRC molecules exhibit greater Charpy impact strengths in double-notch four-point bending and significantly greater elongations to failure in uniaxial tension at 250,% prestrain. Although the DRC-modified polymer shows significantly smaller elongations to failure at 1000,% prestrain, both low- and high-prestrain specimens maintain tensile strengths that are comparable to those of the homopolymer. The improved toughness and ductility of DRC-modified PS appears to be related to the increased stress whitening and craze density that was observed near fracture surfaces. However, the mechanism by which the self-assembling DRC molecules toughen PS is different from that of conventional additives. These molecules assemble into supramolecular nanoribbons that enhance polymer orientation, which in turn modifies crazing patterns and improves impact strength and ductility. [source]

    Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks,

    ADVANCED MATERIALS, Issue 22 2005
    Y. Lee
    Two microporous metal organic framework structures are shown to possess hydrogen uptake capacities reaching 1.74 and 1.98,wt.-% at 77,K (1, 2, see Figure). These give the highest adsorbed H2 density reported thus far for metal-organic-based porous materials. The estimated pore volumes are 0.33 and 0.38,cm3,g,1 for 1 and 2. [source]

    Improved Hydrogen Storage Properties of Ti-Doped Sodium Alanate Using Titanium Nanoparticles as Doping Agents,

    ADVANCED MATERIALS, Issue 12 2003
    B. Bogdanovi
    By using nanosized doping agents, the properties of Ti-catalyzed NaAlH4 storage systems are considerably improved. Hydrogenation,dehydrogenation cyclic testing shows that with nanosized TiN dopants, storage capacities of 5 wt.-% H2 could be achieved. Doping with nanosized Ti brought hydrogenation times close to those required for practical applications, combined with high capacity (4.5 wt.-% H2, see Figure). [source]

    Protective effects of cysteine, methionine and vitamin C on the stomach in chronically alcohol treated rats

    Ramazan Amanvermez
    Abstract A chronic intake of high dose alcohol may cause oxidative stress and inflammation in the stomach. It is hypothesized that cysteine-methionine and vitamin C may neutralize harmful compounds while potentiating the antioxidant capacity of the cell or tissue. The experimental animals were fed regular diets and were maintained for 90 days in the control group, the alcoholic group, which was given 2.5 g of 50% ethanol kg,1 body wt. administered intragastrically every other day, or the alcoholic with antioxidant supplement group, to whom 2.5 g of 50% ethanol kg,1 body wt. + a solution that contained 200 mg vitamin C, 100 mg cysteine and 100 mg methionine was administered intragastrically every other day. After the treatments, the stomach was taken for pathological and biochemical analysis. The stomach of the alcoholic group rats had higher scores of pathological findings compared with the control group, whereas the scores of the antioxidant-supplemented group were lower than the alcoholic group. In addition, the oxidized protein and lipid content in the stomachs of the alcoholic group were significantly higher than the control, but antioxidant supplementation lowered the amount of oxidation in the antioxidant supplemented group. The amount of stomach glutathione in the alcoholic group was higher than that of the control and antioxidant-supplemented groups. Interestingly, the level of total thiol in the stomach tissue of rats with antioxidant supplement was statistically higher than that of the control and alcoholic groups. In conclusion, the scores of the pathological findings in the stomach of rats with the antioxidant supplement were lower than the chronic alcohol-treated rats, albeit the amount of total thiol was increased in this group. Moreover, chronic alcohol treatment led to an increase in the level of lipid and protein oxidation in the stomach tissue of rats. A simultaneous intake of ascorbate/l -cys/l -met along with ethanol attenuated the amount of oxidation which suggested that cysteine-methionine and vitamin C could play a protective role in the stomach against oxidative damage resulting from chronic alcohol ingestion. Copyright © 2007 John Wiley & Sons, Ltd. [source]

    Effect of textile waste water on the spermatogenesis of male albino rats

    R. S. Gupta
    Abstract Textile waste water released from dyeing and printing industries situated in Sanganer, Jaipur (India), brought about inhibition of spermatogenesis in male rats. Water analysis showed the presence of heavy metals at more than permissible limits. Oral administration of waste water to the rats at the dose level of 26.6 ml kg,1 body wt. significantly reduced the weights of testes, epididymides and seminal vesicle. Treated animals showed a notable depression of various stages of spermatogenesis. The production of spermatids was inhibited by 70.8% in waste-water-treated rats. The populations of spermatogonia, preleptotene spermatocytes and secondary spermatocytes were decreased by 67.2, 71.1 and 73.2%, respectively. The total number of Sertoli cells was affected after waste water treatment. Reduced sperm count and motility resulted in treated groups. A significant fall in the content of various biochemical parameters of reproductive tissues was observed after water treatment. Copyright © 2003 John Wiley & Sons, Ltd. [source]

    Critical analysis of potential body temperature confounders on neurochemical endpoints caused by direct dosing and maternal separation in neonatal mice: a study of bioallethrin and deltamethrin interactions with temperature on brain muscarinic receptors

    Jürgen Pauluhn
    Abstract The present investigation was conducted to understand better possible confounding factors caused by direct dosing of neonatal mice during the pre-weaning developmental period. By direct dosing, pups might encounter thermal challenges when temporarily removed from their ,natural habitat'. Typically, this leads to a cold environment and food deprivation (impaired lactation) and modulation of the toxic potency of the substance administered. Growth retardation as a consequence of such behavioural changes in pups makes it increasingly difficult to differentiate specific from non-specific mechanisms. Neonatal NMRI mice were dosed daily by gavage (0.7 mg kg,1 body wt.) from postnatal day (PND) 10,16 with S -bioallethrin, deltamethrin or the vehicle. Then the pups, including their non-treated foster dams, were subjected temporarily for 6 h day to a hypo-, normo- or hyperthermic environment, which was followed by normal housing. The measured temperatures in the environmental chambers were ca. 21, 25 and 30°C, respectively. Thus, temperatures in the hypo- and normothermic groups are comparable to the temperatures commonly present in testing laboratories, whereas the hyperthermic condition is that temperature typically present in the ,natural habitat' of pups. A deviation from the normal behaviour of both pups and dams was observed in the hypo- and normothermic groups. In these groups the rectal temperatures of pups were markedly decreased, especially in the early phase of the study (PND 10,12). Neonates that received either test substance displayed changes in body weights and brain weights at terminal sacrifice (PND 17) when subjected temporarily to a non-physiological environment. An enormous influence of environmental temperature on the density of muscarinic receptors in the crude synaptosomal fraction of the cerebral cortex was ascertained. In summary, these results demonstrate that the direct dosing of thermolabile neonatal mice by gavage is subject to significant artefacts that render the interpretation of findings from such studies difficult. It appears that if direct dosing of neonatal pups is mandated, and inhalation is a relevant route of exposure, the combined inhalation exposure of dams with their litters is an alternative procedure that does not cause disruption of the ,natural habitat' of pups. However, owing to their higher ventilation, under such conditions the pups may receive dosages at least double those of the dams. Copyright © 2003 John Wiley & Sons, Ltd. [source]

    Protective effects of quercetin on ultraviolet A light-induced oxidative stress in the blood of rat

    Ahmet Kahraman
    Abstract The oxidative effects of ultraviolet A (UVA) light (320,400 nm) and the antioxidant effects of quercetin were examined in rat blood. For this purpose, rats were divided into three groups: control, ultraviolet (UV) and ultraviolet + quercetin (UV + Q). The UV and UV + Q groups were irradiated for 4 h a day with UVA light (1.25 mW cm2) during periods of 3, 6 and 9 days. Quercetin (50 mg kg,1 body wt.) was administered intraperitoneally in the UV + Q group rats before irradiation periods. Blood was taken 3, 6 and 9 days post-treatment. Plasma malondialdehyde (MDA) levels significantly increased after 9 days of daily exposure to UVA. Whole blood glutathione (GSH) levels significantly declined after 3,9 days of irradiation. Glutathione peroxidase activity on days 6 and 9 and glutathione reductase activities on days 3, 6 and 9 post-irradiation were diminished significantly. Superoxide dismutase and catalase activities decreased significantly 3,9 days post-irradiation. The administration of quercetin before the 9-day period of irradiation significantly reduced the increase in plasma MDA value. Whole blood GSH levels significantly decreased with the administration of quercetin on all days. Quercetin significantly increased antioxidant enzymes diminished by UVA irradiation. Exposure of rats to UVA light leads to oxidative stress, reflected by increased MDA and reduced antioxidant enzyme levels. The administration of quercetin appears to be a useful approach to reduce the damage produced by UVA radiation. Copyright © 2002 John Wiley & Sons, Ltd. [source]

    Modulatory potential of ellagic acid, a natural plant polyphenol on altered lipid profile and lipid peroxidation status during alcohol-induced toxicity: A pathohistological study

    Nagarajan Devipriya
    Abstract Polyphenol-rich dietary foodstuffs, consumed as an integral part of vegetables, fruits, and beverages have attracted attention due to their antioxidant and anticancer properties. Ellagic acid (EA), a polyphenolic compound widely distributed in fruits and nuts, has been reported to scavenge free radicals and inhibit lipid peroxidation. Chronic consumption of alcohol potentially results in serious illness including hepatitis, fatty liver, hypertriglyceridemia, and cirrhosis. A little is known about the influence of EA on alcohol toxicity in vivo. Accordingly, in the present study, we have evaluated the protective effects of EA on lipid peroxidation and lipid levels during alcohol-induced toxicity in experimental rats. Forty female albino Wistar rats, which were weighing between 150,170 g were used for the study. The toxicity was induced by administration of 20% alcohol orally (7.9 g/kg body wt.) for 45 days. Rats were treated with EA at three different doses (30, 60, and 90 mg/kg body wt.) via intragastric intubations together with alcohol. At the end of experimental duration, liver marker enzymes (i.e., aspartate transaminase, alanine transaminase), lipid peroxidative indices (i.e., thiobarbituriacid reactive substances and hydroperoxides) in plasma, and lipid levels (i.e., cholesterol, free fatty acids, triglycerides and phospholipids) in tissues were analyzed to evaluate the antiperoxidative and antilipidemic effects of EA. Liver marker enzymes, lipid peroxidative indices, and lipid levels, i.e., cholesterol, triglycerides and free fatty acids, were significantly increased whereas phospholipid levels were significantly decreased in the alcohol-administered group. EA treatment resulted in positive modulation of marker enzymes, peroxidative indices, and lipid levels. EA at the dose of 60 mg/kg body wt. was found to be more effective when compared to the other two doses. Histological changes observed were also inconsistent with the biochemical parameters. Our study suggests that EA exerts beneficial effects at the dosage of 60 mg/kg body wt. against alcohol-induced damage, and it can be used as a potential drug for the treatment of alcohol-abuse ailments in the near future. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:101,112, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20226 [source]

    Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro

    Stephen D. Waldman
    Abstract Successful joint resurfacing by tissue-engineered cartilage has been limited, in part, by an inability to secure the implant to bone. To overcome this, we have developed the methodology to form a cartilage implant in vitro consisting of a layer of cartilagenous tissue overlying a porous, biodegradable calcium polyphosphate (CPP) substrate. As bone will grow into the CPP after implantation, it will result in anchorage of the cartilage. In this study, the cartilagenous tissue formed in vitro after 8 weeks in culture was characterized and compared to native articular cartilage. Light microscopic examination of histological sections showed that there was a continuous layer of cartilagenous tissue on, and integrated with the subsurface of, the CPP substrate. The in vitro -formed tissue achieved a similar thickness to native articular cartilage (mean ± SEM: in vitro = 0.94 ± 0.03 mm; ex vivo = 1.03 ± 0.01 mm). The cells in the in vitro -formed tissue synthesized large proteoglycans (Kav ± SEM: in vitro = 0.27 ± 0.01; ex vivo = 0.27 ± 0.01) and type II collagen similar to the chondrocytes in the ex-vivo cartilage. The in vitro -formed tissue had a similar amount of proteoglycan (GAG ,g/mg dry wt.: in vitro = 198 ± 10; ex vivo = 201 ± 13) but less collagen than the native cartilage (hydroxyproline ,g/mg dry wt.: in vitro = 21 ± 1; ex vivo = 70 ± 8). The in vitro -formed tissue had only about 3% of the load-bearing capacity and stiffness of the native articular cartilage, determined from unconfined mechanical compression testing. Although low, this was within the range of properties reported by others for tissue-engineered cartilage. It is possible that the limited load-bearing capacity is the result of the low collagen content and further studies are required to identify the conditions that will increase collagen synthesis. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62:323,330, 2002 [source]

    Matrimid®/MgO mixed matrix membranes for pervaporation

    AICHE JOURNAL, Issue 7 2007
    Lan Ying Jiang
    Abstract For the first time, porous Magnesium oxide (MgO) particles have been applied to generate mixed matrix membranes (MMM) for the dehydration of iso-propanol by pervaporation. A modified membrane fabrication procedure has been developed to prepare membranes with higher separation efficiency. FESEM and DSC characterizations confirm that the MMMs produced have intimate polymer/particle interface; the nanosize crystallites on MgO surface may interfere with the polymer chain packing and induce chains rigidification upon the particle surface. It is observed that Matrimid®/MgO MMMs generally have higher selectivity, but lower permeability relative to the neat Matrimid® dense membrane. The highest selectivity is obtained with MMM containing 15 wt. % MgO. The selective sorption and diffusion of water in the MgO particles, and the polymer/particle interface properties combine to lead to the earlier phenomena. The investigation on the effect of feed water composition on the pervaporation performance reveals that the addition of MgO can show the selectivity-enhancing effects if the feed water concentration is lower than 30 wt. %. In the dehydration of isopropanol aqueous solution with 10 wt. % water, the selectivity of the MMMs is around 2,000, which is more than twice of 900 of neat polymeric membrane. This makes MMMs extremely suitable for breaking the azeotrops of water/iso-propanol. Gas permeation tests are also conducted using O2 and N2 to determine the microscopic structure of the MMMs, and to investigate the relationship between pervaporation and gas separation performance. © 2007 American Institute of Chemical Engineers AIChE J, 2007 [source]

    Development of Gelatin Hydrogel Pads as Antibacterial Wound Dressings

    Vichayarat Rattanaruengsrikul
    Abstract Gelatin hydrogel pads have been prepared from a 10,wt.-% gelatin solution that contained 2.5,wt.-% AgNO3 in 70% v/v acetic acid by a solvent-casting technique. The AgNO3 -containing gelatin solution was aged under mechanical stirring for various time intervals to allow for the formation of silver nanoparticles (nAgs). The formation of nAgs was monitored by a UV-vis spectrophotometer. The morphology and size of the nAgs were characterized by transmission electron microscopy (TEM). To improve the water resistance of the hydrogels, various contents of glutaraldehyde (GTA) were added to the AgNO3 -containing gelatin solution to cross-link the obtained gelatin hydrogels. These hydrogels were tested for their water retention and weight loss behavior, release characteristics of the as-loaded silver, and antibacterial activity against Gram-negative Escherichiacoli and Gram-positive Staphylococcusaureus. The AgNO3 -containing gelatin solution that had been aged for 5 d showed the greatest number of nAgs formed. The size of these particles, based on TEM results, was 10,11,nm. With an increase in the GTA content used to cross-link the hydrogels, the water retention, the weight loss, and the cumulative amount of silver released were found to decrease. Finally, all of the nAg-loaded gelatin hydrogels could inhibit the growth of the tested pathogens, which confirmed their applicability as antibacterial wound dressings. [source]