Wt% NaCl Equivalent (wt% + nacl_equivalent)

Distribution by Scientific Domains


Selected Abstracts


Infiltration of basinal fluids into high-grade basement, South Norway: sources and behaviour of waters and brines

GEOFLUIDS (ELECTRONIC), Issue 1 2003
S. A. Gleeson
Abstract Quartz veins hosted by the high-grade crystalline rocks of the Modum complex, Southern Norway, formed when basinal fluids from an overlying Palaeozoic foreland basin infiltrated the basement at temperatures of c. 220°C (higher in the southernmost part of the area). This infiltration resulted in the formation of veins containing both two-phase and halite-bearing aqueous fluid inclusions, sometimes with bitumen and hydrocarbon inclusions. Microthermometric results demonstrate a very wide range of salinities of aqueous fluids preserved in these veins, ranging from c. 0 to 40 wt% NaCl equivalent. The range in homogenization temperatures is also very large (99,322°C for the entire dataset) and shows little or no correlation with salinity. A combination of aqueous fluid microthermometry, halogen geochemistry and oxygen isotope studies suggest that fluids from a range of separate aquifers were responsible for the quartz growth, but all have chemistries comparable to sedimentary formation waters. The bulk of the quartz grew from relatively low ,18O fluids derived directly from the basin or equilibrated in the upper part of the basement (T < 200°C). Nevertheless, some fluids acquired higher salinities due to deep wall-rock hydration reactions leading to salt saturation at high temperatures (>300°C). The range in fluid inclusion homogenization temperatures and densities, combined with estimates of the ambient temperature of the basement rocks suggests that at different times veins acted as conduits for influx of both hotter and colder fluids, as well as experiencing fluctuations in fluid pressure. This is interpreted to reflect episodic flow linked to seismicity, with hotter dry basement rocks acting as a sink for cooler fluids from the overlying basin, while detailed flow paths reflected local effects of opening and closing of individual fractures as well as reaction with wall rocks. Thermal considerations suggest that the duration of some flow events was very short, possibly in the order of days. As a result of the complex pattern of fracturing and flow in the Modum basement, it was possible for shallow fluids to penetrate basement rocks at significantly higher temperatures, and this demonstrates the potential for hydrolytic weakening of continental crust by sedimentary fluids. [source]


Epithermal Gold-Silver Mineralization of the Asachinskoe Deposit in South Kamchatka, Russia

RESOURCE GEOLOGY, Issue 4 2007
Ryohei Takahashi
Abstract The Asachinskoe epithermal Au-Ag deposit is a representative low-sulfidation type of deposit in Kamchatka, Russia. In the Asachinskoe deposit there are approximately 40 mineralized veins mainly hosted by dacite,andesite stock intrusions of Miocene,Pliocene age. The veins are emplaced in tensional cracks with a north orientation. Wall-rock alteration at the bonanza level (170,200 m a.s.l.) consists of the mineral assemblage of quartz, pyrite, albite, illite and trace amounts of smectite. Mineralized veins are well banded with quartz, adularia and minor illite. Mineralization stages in the main zone are divided into stages I,IV. Stage I is relatively barren quartz,adularia association formed at 4.7 ± 0.2 Ma (K-Ar age). Stage II consists of abundant illite, Cu-bearing cryptomelane and other manganese oxides and hydroxides, electrum, argentite, quartz, adularia and minor rhodochrosite and calcite. Stage III, the main stage of gold mineralization (4.5,4.4 ± 0.1,3.1 ± 0.1 Ma, K-Ar age), consists of a large amount of electrum, naumannite and Se-bearing polybasite with quartz,adularia association. Stage IV is characterized by hydrothermal breccia, where electrum, tetrahedrite and secondary covellite occur with quartz, adularia and illite. The concentration of Au+Ag in ores has a positive correlation with the content of K2O + Al2O3, which is controlled by the presence of adularia and minor illite, and both Hg and Au also have positive correlations with the light rare-earth elements. Fluid inclusion studies indicate a salinity of 1.0,2.6 wt% NaCl equivalent for the whole deposit, and ore-forming temperatures are estimated as approximately 160,190°C in stage III of the present 218 m a.s.l. and 170,180°C in stage IV of 200 m a.s.l. The depth of ore formation is estimated to be 90,400 m from the paleo-water table for stage IV of 200 m a.s.l., if a hydrostatic condition is assumed. An increase of salinity (>CNaCl, 0.2 wt%) and decrease of temperature (>T , 30°C) within a 115-m vertical interval for the ascending hydrothermal solution is calculated, which is interpreted as due to steam loss during fluid boiling. Ranges of selenium and sulfur fugacities are estimated to be logfSe2 = ,17 to ,14.5 and logfS2 = ,15 to ,12 for the ore-forming solution that was responsible for Au-Ag-Se precipitation in stage III of 200 m a.s.l. Separation of Se from S-Se complex in the solution and its partition into selenides could be due to a relatively oxidizing condition. The precipitation of Au-Ag-Se was caused by boiling in stage III, and the precipitation of Au-Ag-Cu was caused by sudden decompression and boiling in stage IV. [source]


Geology, Wall-rock Alteration and Vein Paragenesis of the Bilimoia Gold Deposit, Kainantu Metallogenic Region, Papua New Guinea

RESOURCE GEOLOGY, Issue 3 2007
Joseph Onglo Espi
Abstract The Bilimoia deposit (2.23 Mt, 24 g/t Au), located in the eastern Central Mobile Belt of mainland Papua New Guinea, is composed of fault-hosted, NW,NNW-trending Irumafimpa,Kora and Judd,Upper Kora Au-quartz veins hosted by Middle,Late Triassic basement that was metamorphosed to medium-grade greenschist facies between Middle,Late Triassic and Early,Middle Jurassic. Mineralizing fluids were introduced during crustal thickening, rapid uplift, change of plate motions from oblique to orthogonal compression, active faulting and S3 and S4 events in an S1,S4 deformation sequence. The Bilimoia deposit is spatially and temporally related to I-type, early intermediate to felsic and late mafic intrusions emplaced in Late Miocene (9,7 Ma). Hydrothermal alteration and associated mineralization is divided into 10 main paragenetic stages: (1) chlorite,epidote-selvaged quartz,calcite,specularite vein; (2) local quartz,illite,pyrite alteration; (3) quartz,sericite,mariposite,fuchsite,pyrite wall-rock alteration that delimits the bounding shears; (4) finely banded, colloform-, crustiform- and cockade-textured and drusy quartz ± early wolframite ± late adularia; (5) hematite; (6) pyrite; (7) quartz ± amethyst-base metal sulfides; (8) quartz,chalcopyrite,bornite,Sn and Cu sulfides,Au tellurides and Te ± Bi ± Ag ± Cu ± Pb phases; (9) Fe ± Mn carbonates; and (10) supergene overprint. Fluid inclusions in stage 4 are characterized by low salinity (0.9,5.4 wt% NaCl equivalent), aqueous,carbonic fluids with total homogenization temperatures ranging from 210 to 330°C. Some of the inclusions that homogenized between 285 and 330°C host coexisting liquid- and vapor-rich (including carbonic) phases, suggesting phase separation. Fluid inclusions in quartz intergrown with wolframite have low salinity (0.9,1.2 wt% NaCl equivalent), aqueous,carbonic fluids at 240,260°C, defining the latter's depositional conditions. The ore fluids were derived from oxidized magmatic source initially contaminated by reduced basement rocks. Wall-rock alteration and involvement of circulating meteoric waters were dominant during the first three stages and early part of stage 4. Stage 5 hematite was deposited as a result of stage 4 phase separation or entrainment of oxygenated groundwater. Gold is associated with Te- and Bi-bearing minerals and mostly precipitated as gold-tellurides during stage 8. Gold deposition occurred below 350°C due to a change in the sulfidation and oxidation state of the fluids, depressurization and decreasing temperature and activities of sulfur and tellurium. Bisulfides are considered to be the main Au-transporting complexes. The Bilimoia deposit has affinities that are similar to many gold systems termed epizonal orogenic and intrusion-related. The current data allow us to classify the Bilimoia deposit as a fault-controlled, metamorphic-hosted, intrusion-related mesothermal to low sulfidation epithermal quartz,Au,Te,Bi vein system. [source]


Evolution of Hydrothermal System at the Dizon Porphyry Cu-Au Deposit, Zambales, Philippines

RESOURCE GEOLOGY, Issue 2 2005
Akira Imai
Abstract. Evolution of hydrothermal system from initial porphyry Cu mineralization to overlapping epithermal system at the Dizon porphyry Cu-Au deposit in western central Luzon, Zambales, Philippines, is documented in terms of mineral paragen-esis, fluid inclusion petrography and microthermometry, and sulfur isotope systematics. The paragenetic stages throughout the deposit are summarized as follows; 1) stockwork amethystic quartz veinlets associated with chalcopyrite, bornite, magnetite and Au enveloped by chlorite alteration overprinting biotite alteration, 2) stockwork quartz veinlets with chalcopyrite and pyrite associated with Au and chalcopyrite and pyrite stringers in sericite alteration, 3) stringer quartz veinlets associated with molybdenite in sericite alteration, and 4) WNW-trending quartz veins associated with sphalerite and galena at deeper part, while enargite and stibnite at shallower levels associated with advanced argillic alteration. Chalcopyrite and bornite associated with magnetite in quartz veinlet stockwork (stage 1) have precipitated initially as intermediate solid solution (iss) and bornite solid solution (bnss), respectively. Fluid inclusions in the stockwork veinlet quartz consist of gas-rich inclusions and polyphase inclusions. Halite in polyphase inclusions dissolves at temperatures ranging from 360d,C to >500d,C but liquid (brine) and gas (vapor) do not homogenize at <500d,C. The maximum pressure and minimum temperature during the deposition of iss and bnss with stockwork quartz veinlets are estimated to be 460 bars and 500d,C. Fluid inclusions in veinlet stockwork quartz enveloped in sericite alteration (stage 2) consist mainly of gas-rich inclusions and polyphase inclusions. In addition to the possible presence of saturated NaCl crystals at the time of entrapment of fluid inclusions that exhibit the liquid-vapor homogenization temperatures lower than the halite dissolution temperatures in some samples, wide range of temperatures of halite dissolution and liquid-vapor homogenization of polyphase inclusions from 230d,C to >500d,C and from 270d,C to >500d,C, respectively, suggests heterogeneous entrapment of gaseous vapor and hypersaline brine. The minimum pressure and temperature are estimated to be about 25 bars and 245d,C. Fluid inclusions in veinlet quartz associated with molybdenite (stage 3) are dominated by gas-rich inclusions accompanied with minor liquid-rich inclusions that homogenize at temperatures between 350d,C and 490d,C. Fluid inclusions in vuggy veinlet quartz associated with stibnite (stage 4) consist mainly of gas-rich inclusions with subordinate polyphase inclusions that do not homogenize below 500d,C. Fluid inclusions in veinlet quartz associated with galena and sphalerite (stage 4) are composed of liquid-rich two-phase inclusions, and they homogenize into liquid phase at temperatures ranging widely from 190d,C to 300d,C (suggesting boiling) and the salinity ranges from 1.0 wt% to 3.4 wt% NaCl equivalent. A pressure of about 15 bars is estimated for the dilute aqueous solution of 190d,C from which veinlet quartz associated with galena and sphalerite precipitated. In addition to a change in temperature-pressure regime from lithostatic pressure during the deposition of iss and bnss with stockwork quartz veinlets to hydrostatic pressure during fracture-controlled quartz veinlet associated with galena and sphalerite, a decrease in pressure is supposed to have occurred due to unroofing or removal of the overlying piles during the temperature decrease in the evolution of hydrothermal system. The majority of the sulfur isotopic composition of sulfides ranges from ±0 % to +5 %. Sulfur originated from an iso-topically uniform and homogeneous source, and the mineralization occurred in a single hydrothermal system. [source]


Chemical, Isotopic, and Fluid Inclusion Evidence for the Hydrothermal Alteration of the Footwall Rocks of the BIF-Hosted Iron Ore Deposits in the Hamersley District, Western Australia

RESOURCE GEOLOGY, Issue 2 2003
Makoto Haruna
Abstract. The petrography, chemical, fluid inclusion and isotope analyses (O, Rb-Sr) were conducted for the shale samples of the Mount McRae Shale collected from the Tom Price, Newman, and Paraburdoo mines in the Hamersley Basin, Western Australia. The Mount McRae Shale at these mines occurs as a footwall unit of the secondary, hematite-rich iron ores derived from the Brockman Iron Formation, one of the largest banded iron formations (BIFs) in the world. Unusually low contents of Na, Ca, and Sr in the shales suggest that these elements were leached away from the shale after deposition. The ,18O (SMOW) values fall in the range of + 15.0 to +17.9 per mil and show the positive correlation with calculated quartz/sericite ratios of the shale samples. This suggests that the oxygen isotopic compositions of shale samples were homogenized and equilibrated by postdepositional event. The pyrite nodules hosted by shales are often rimmed by thin layers of silica of varying crystallinity. Fluid inclusions in quartz crystals rimming a pyrite nodule show homogenization temperatures ranging from 100 to 240d,C for 47 inclusions and salinities ranging from 0.4 to 12.3 wt% NaCl equivalent for 18 inclusions. These fluid inclusion data give direct evidence for the hydrothermal activity and are comparable to those of the vein quartz collected from the BIF-derived secondary iron ores (Taylor et al, 2001). The Rb-Sr age for the Mount McRae Shale is 1,952 ± 289 Ma and at least 200 million years younger than the depositional age of the Brockman Iron Formation of , 2.5 Ga in age. All the data obtained in this study are consistent with the suggestion that high temperature hydrothermal fluids were responsible for both the secondary iron ore formation and the alteration of the Mount McRae Shale. [source]