Home About us Contact | |||
W Kg (w + kg)
Selected AbstractsForaging energetics of arctic cormorants and the evolution of diving birdsECOLOGY LETTERS, Issue 3 2001David Grémillet Efficient body insulation is assumed to have enabled birds and mammals to colonize polar aquatic ecosystems. We challenge this concept by comparing the bioenergetics of cormorants (Phalacrocorax carbo) living in temperate and arctic conditions. We show that although these birds have limited insulation, they maintain high body temperature (42.3 °C) when diving in cold water (1,10 °C). Their energy demand at these times is extremely high (up to 60 W kg,1). Free-living cormorants wintering in Greenland (water temperature ,1 °C) profoundly alter their foraging activity, thus minimizing time spent in water and the associated high thermoregulatory costs. They then meet their daily food demand within a single intense dive bout (lasting 9 min on average). Their substantial energy requirements are balanced by the highest predatory efficiency so far recorded for aquatic predators. We postulate that similar behavioural patterns allowed early diving birds (Cretaceous) to colonize cold coastal areas before they evolved efficient insulation. [source] Relationships among vertically structured in situ measures of turbulence, larval fish abundance and feeding success and copepods on Western Bank, Scotian ShelfFISHERIES OCEANOGRAPHY, Issue 3 2002ChristianS. Using vertically stratified data of the abundance of silver hake (Merluccius bilinearis) larvae and concentrations of copepods collected in the field, we examine relationships among the vertical distribution of larval fish, their potential prey, feeding success and water column turbulence. Water column turbulence and associated stratification parameters were estimated from: (i) in situ measures of turbulent kinetic energy dissipation (,) provided by an EPSONDE profiler; (ii) in situ wind speed; (iii) the Richardson number (Ri); and (iv) the buoyancy frequency (N2). Small (< 5 mm total length) silver hake were more abundant in the least turbulent waters (i.e. at a minimum in the rate of dissipation of turbulent kinetic energy, , < 10,7 W kg,1; Ri > 0.25; N2 > 0.001 (rad s,1)2). Partial correlations amongst ,, N2 and small hake larvae were significant only for N2. The abundance of larger (> 5 mm total length) hake larvae was positively correlated with depth and was not associated with either , or N2. Vertical distributions of three potential prey (classified by stage) were variable. Early stage copepodids were positively correlated with N2 and negatively correlated with ,. We found no evidence of diel distribution patterns for small (< 5 mm total length) hake larvae or for any of the developmental stages of the copepods examined. Neither estimate of water column turbulence inferred from wind speed nor from Ri was meaningfully related to in situ estimates of , or to larval fish abundance. Feeding success, measured either as prey items (gut),1, average prey length, or total prey volume (gut),1, was not related to predicted encounter rates between days. However, the average prey length (gut),1 was significantly (P < 0.01) related to water column turbulence. These conflicting results suggest that the relationship between larval feeding and the environment is more complicated than assumed. We conclude that without substantial high resolution in situ examination of the relationship between the vertical distributions of turbulence, larvae and their prey, the growing acceptance in the secondary literature that turbulence has a positive and biologically meaningful effect on trophic interactions between fish and their zooplankton prey (a generalization based largely on modelling and laboratory experiments) is premature. [source] Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy StorageADVANCED FUNCTIONAL MATERIALS, Issue 21 2009Zheng Chen Abstract Nanocomposites of interpenetrating carbon nanotubes and vanadium pentoxide (V2O5) nanowires networks are synthesized via a simple in situ hydrothermal process. These fibrous nanocomposites are hierarchically porous with high surface area and good electric conductivity, which makes them excellent material candidates for supercapacitors with high energy density and power density. Nanocomposites with a capacitance up to 440 and 200,F g,1 are achieved at current densities of 0.25 and 10 A g,1, respectively. Asymmetric devices based on these nanocomposites and aqueous electrolyte exhibit an excellent charge/discharge capability, and high energy densities of 16,W h kg,1 at a power density of 75,W kg,1 and 5.5,W h kg,1 at a high power density of 3,750,W kg,1. This performance is a significant improvement over current electrochemical capacitors and is highly competetive with Ni,MH batteries. This work provides a new platform for high-density electrical-energy storage for electric vehicles and other applications. [source] Biochemical universality of living matter and its metabolic implicationsFUNCTIONAL ECOLOGY, Issue 4 2005A. M. MAKARIEVA Summary 1Recent discussions of metabolic scaling laws focus on the model of West, Brown & Enquist (WBE). The core assumptions of the WBE model are the size-invariance of terminal units at which energy is consumed by living matter and the size-invariance of the rate of energy supply to these units. Both assumptions are direct consequences of the biochemical universality of living matter. However, the second assumption contradicts the central prediction of the WBE model that mass-specific metabolic rate q should decrease with body mass with a scaling exponent µ = ,1/4, thus making the model logically inconsistent. 2Examination of evidence interpreted by WBE and colleagues in favour of a universal µ = ,1/4 across 15 and more orders of magnitude range in body mass reveals that this value resulted from methodological errors in data assortment and analysis. 3Instead, the available evidence is shown to be consistent with the existence of a size-independent mean value of mass-specific metabolic rate common to most taxa. Plotted together, q -values of non-growing unicells, insects and mammals in the basal state yield µ , 0. Estimated field metabolic rates of bacteria and vertebrates are also size-independent. 4Standard mass-specific metabolic rates of most unicells, insects and mammals studied are confined between 1 and 10 W kg,1. Plant leaves respire at similar rates. This suggests the existence of a metabolic optimum for living matter. With growing body size and diminishing surface-to-volume ratio organisms have to change their physiology and perfect their distribution networks to keep their q in the vicinity of the optimum. [source] Foraging effort in relation to the constraints of reproduction in free-ranging albatrossesFUNCTIONAL ECOLOGY, Issue 1 2003S. A. Shaffer Summary 1Theoretical models predict that animals will vary their effort to maximize different currencies such as time and energy when the constraints of reproduction change during breeding, but this has been poorly studied in free-ranging animals. 2Foraging effort (energy per unit time) was examined by comparing mass changes, foraging costs and activity-specific behaviours of Wandering Albatrosses (Diomedea exulans Linnaeus) during the incubation and chick-brooding stages. In 1998, 38 albatrosses (20 during incubation and 18 during brooding) were injected with doubly labelled water and equipped with satellite transmitters and activity data loggers. 3During incubation, albatrosses travelled 3·7 times farther and were at sea 3·2 times longer, yet foraging costs were significantly lower than trips made during brooding (incubation 4·52 ± 0·50 SD W kg,1vs brooding 4·98 ± 0·55 SD W kg,1). 4The rate of daily mass gain decreased significantly with time at sea during incubation whereas the rate of daily mass gain increased significantly with time at sea during brooding. 5Foraging effort was higher during brooding, suggesting that birds were minimizing time at sea to maximize the rate of food delivery to chicks. In contrast, foraging effort was lower during incubation, suggesting that birds were maximizing time at sea and minimizing the energy costs of foraging. 6Foraging costs were also different between sexes. However, this was related to body size differences and not to differences in foraging effort as suggested in previous studies. [source] Field metabolic rates of black-browed albatrosses Thalassarche melanophrys during the incubation stageJOURNAL OF AVIAN BIOLOGY, Issue 6 2004Scott A. Shaffer Field metabolic rates (FMR) and activity patterns of black-browed albatrosses Thalassarche melanophrys were measured while at sea and on nest during the incubation stage at Kerguelen Island, southwestern Indian Ocean. Activity-specific metabolic rates of five albatrosses at sea (FMRat-sea) were measured using doubly labeled water (DLW), and by equipping birds with wet-dry activity data loggers that determined when birds were in flight or on the water. The metabolic rates of four birds incubating their eggs (FMRon-nest) were also measured using DLW. The mean±SD FMRat-sea of albatrosses was 611±96 kJ kg,1 d,1 compared to FMRon-nest of 196±52 kJ kg,1 d,1. While at sea, albatrosses spent 52.9±8.2% (N=3) of their time in flight and they landed on the water 41.2±13.9 times per day. The FMR of black-browed albatrosses appear to be intermediate to that of three other albatross species. Based on at-sea activity, the power requirement of flight was estimated to be 8.7 W kg,1 (or 4.0×predicted BMR), which is high compared to other albatross species, but may be explained by the high activity levels of the birds when at sea. The FMRat-sea of albatrosses, when scaled with body mass, are lower than other seabirds of similar body size, which probably reflects the economical nature of their soaring flight. [source] Pulsed radio-frequency electromagnetic fields: dose-dependent effects on sleep, the sleep EEG and cognitive performanceJOURNAL OF SLEEP RESEARCH, Issue 3 2007SABINE J. REGEL Summary To establish a dose,response relationship between the strength of electromagnetic fields (EMF) and previously reported effects on the brain, we investigated the influence of EMF exposure by varying the signal intensity in three experimental sessions. The head of 15 healthy male subjects was unilaterally exposed for 30 min prior to sleep to a pulse-modulated EMF (GSM handset like signal) with a 10 g-averaged peak spatial specific absorption rate of (1) 0.2 W kg,1, (2) 5 W kg,1, or (3) sham exposed in a double-blind, crossover design. During exposure, subjects performed two series of three computerized cognitive tasks, each presented in a fixed order [simple reaction time task, two-choice reaction time task (CRT), 1-, 2-, 3-back task]. Immediately after exposure, night-time sleep was polysomnographically recorded for 8 h. Sleep architecture was not affected by EMF exposure. Analysis of the sleep electroencephalogram (EEG) revealed a dose-dependent increase of power in the spindle frequency range in non-REM sleep. Reaction speed decelerated with increasing field intensity in the 1-back task, while accuracy in the CRT and N-back task were not affected in a dose-dependent manner. In summary, this study reveals first indications of a dose,response relationship between EMF field intensity and its effects on brain physiology as demonstrated by changes in the sleep EEG and in cognitive performance. [source] Ternary single-source precursors for polycrystalline thin-film solar cellsAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 11 2002Kulbinder K. Banger The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution for fabricating solar arrays with high specific power (W kg,1). The use of a polycrystalline chalcopyrite absorber layer for thin-film solar cells is considered as the next generation in photovoltaic devices. At NASA GRC we have focused on the development of new single-source precursors (SSPs) and their utility to deposit the chalcopyrite semiconducting layer (CIS) onto flexible substrates for solar-cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering are described. Thin-film fabrication studies demonstrate that the SSPs can be used in a spray chemical vapor deposition process for depositing CIS at reduced temperatures, and result in electrical properties that are suitable for photovoltaic devices. Copyright © 2002 John Wiley & Sons, Ltd. [source] Ultra scale-down studies of the effect of shear on cell quality; Processing of a human cell line for cancer vaccine therapyBIOTECHNOLOGY PROGRESS, Issue 5 2009Ryan McCoy Abstract Whole cell therapy is showing potential in the clinic for the treatment of many chronic diseases. The translation of laboratory-scale methods for cell harvesting and formulation to commercial-scale manufacturing offers major bioprocessing challenges. This is especially the case when the cell properties determine the final product effectiveness. This study is focused on developing an ultra scale-down method for assessing the impact of the hydrodynamic environment on human cells that constitute the therapeutic product. Small volumes of a prostate cancer cell line, currently being developed in late phase II clinical trials as an allogeneic whole cell vaccine therapy for prostate cancer, were exposed to hydrodynamic shear rates similar to those present in downstream process, formulation and vial filling operations. A small scale rotating disc shear device (20 mL) was used over a range of disc speeds to expose cells to maximum shear rates ranging from 90 × 103 to 175 × 103 s -1 (equivalent maximum power dissipation rates of 14 × 103 to 52 × 103 W kg -1). These cells were subsequently analyzed for critical cell quality attributes such as the retention of membrane integrity and cell surface marker profile and density. Three cell surface markers (CD9, CD147, and HLAA-C) were studied. The cell markers exhibited different levels of susceptibility to hydrodynamic shear but in all cases this was less than or equal to the loss of membrane integrity. It is evident that the marker, or combination or markers, which might provide the required immunogenic response, will be affected by hydrodynamic shear environment during bioprocessing, if the engineering environment is not controlled to within the limits tolerated by the cell components. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |