Home About us Contact | |||
Vomeronasal Organ (vomeronasal + organ)
Selected AbstractsFrequency and Localization of the Putative Vomeronasal Organ in Humans in Relation to Age and Gender,THE LARYNGOSCOPE, Issue 3 2001Michael Knecht MD Abstract Objectives/Hypotheses In many species the vomeronasal organ (VNO) serves as a chemosensory organ in addition to the olfactory system. The present investigation was undertaken to study 1) the frequency of monolateral or bilateral detection of the putative VNO (pVNO) in humans, 2) its localization in humans, and 3) whether detectability of the pVNO varies with age or gender. Study Design Prospective. Methods A total of 173 subjects participated in this study (88 women and 85 men; age range, 2,91 y). Inspection of the nose was performed with a speculum and a 30° endoscope. The exact localization of the VNO was measured with custom-built rulers. Results The study revealed the following major results: 1) A pVNO is detectable in approximately two-thirds of the population and bilateral pVNOs are present in approximately 40% of investigated subjects, 2) its localization on the left and right nasal septum is almost symmetrical, and 3) and detectability of the pVNO is not related to age or gender. Conclusions The present data indicated that the pVNO is present in approximately two-thirds of the population. This value may be biased by methodological or biological factors; nevertheless, it indicates that the pVNO is not observed in all humans regardless of age and gender. Thus, considering its variability in shape and immunohistochemical characteristics and the missing nerval connections between the peripheral "organ" and the central nervous system, the present results are not suited to argue for a functional significance of the pVNO in humans. [source] Urinary pheromones promote ERK/Akt phosphorylation, regeneration and survival of vomeronasal (V2R) neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2006Jing Xia Abstract The G protein-coupled pheromone receptor neurons (V1R and V2R) of the vomeronasal organ (VNO) are continually replaced throughout the lifetime of the mouse. Moreover, active signalling of V2Rs via the transient receptor potential 2(TRPC2) channel is necessary for regeneration of receptors, as the TRPC2 null mutant mouse showed a 75% reduction of V2Rs by the age of two months. Here we describe V2R mediated signalling in a neuronal line established from vomeronasal stem cells taken from postnatal female mice. Cells were immunoreactive for G,o and V2R, whereas V1R and G,i immunoreactivity could not be detected. Biological ligands (dilute urine and its protein fractions) were found to increase proliferation and survival of these neurons. Dilute mouse urine but not artificial urine also induced ERK, Akt and CREB signalling in a dose dependent way. The volatile fraction of male mouse urine alone was without effect while the fraction containing peptides (> 5 kDa) also stimulated ERK and Akt phosphorylation. The ERK, Akt and CREB phosphorylation response was sensitive to pertussis toxin, confirming the involvement of V2R linked G,o. Dilute mouse urine or its high molecular weight protein fraction increased survival and proliferation of these neurons. Hence, urinary pheromones, which signal important social information via mature neurons, also promote survival and proliferation of their regenerating precursors. These data show that regenerating V2Rs respond to urine and the urinary peptides by activation of the Ras-ERK and PI3-Akt pathways, which appear to be important for vomeronasal neural survival and proliferation. [source] Lactosamine modulates the rate of migration of GnRH neurons during mouse developmentEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Elizabeth Bless Abstract Gonadotropin-releasing hormone (GnRH) neurons are derived from progenitor cells in the olfactory placodes and migrate from the vomeronasal organ (VNO) across the cribriform plate into the forebrain. At embryonic day (E)12 in the mouse most of these neurons are still in the nasal compartment but by E15 most GnRH neurons have migrated into the forebrain. Glycoconjugates with carbohydrate chains containing terminal lactosamine are expressed by neurons in the main olfactory epithelium and in the VNO. One of the key enzymes required to regulate the synthesis and expression of lactosamine, ,1,3-N-acetylglucosaminyltransferase-1 (,3GnT1), is strongly expressed by neurons in the olfactory epithelium and VNO, and on neurons migrating out of the VNO along the GnRH migratory pathway. Immunocytochemical analysis of lactosamine and GnRH in embryonic mice reveals that the percentage of lactosamine+,GnRH+ double-labeled neurons decreases from >,80% at E13, when migration is near its peak, to ,,30% at E18.5, when most neurons have stopped migrating. In ,3GnT1,/, mice, there is a partial loss of lactosamine expression on GnRH neurons. Additionally, a greater number of GnRH neurons were retained in the nasal compartment of null mice at E15 while fewer GnRH neurons were detected later in embryonic development in the ventral forebrain. These results suggest that the loss of lactosamine on a subset of GnRH neurons impeded the rate of migration from the nose to the brain. [source] The vomeronasal organ is required for the expression of lordosis behaviour, but not sex discrimination in female miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2006Matthieu Keller Abstract The role of the vomeronasal organ (VNO) in mediating neuroendocrine responses in female mice is well known; however, whether the VNO is equally important for sex discrimination is more controversial as evidence exists for a role of the main olfactory system in mate recognition. Therefore, we studied the effect of VNO removal (VNOx) on the ability of female mice to discriminate between volatile and non-volatile odours of conspecifics of the two sexes and in different endocrine states using Y-maze tests. VNOx female mice were able to reliably distinguish between male and female or male and gonadectomized (gdx) male volatile odours. However, when subjects had to discriminate between male and female or gdx male non-volatile odours, VNOx females were no longer able to discriminate between sex or different endocrine status. These results thus show that the VNO is primarily involved in the detection and processing of non-volatile odours, and that female mice can use volatile odours detected and processed by the main olfactory system for mate recognition. However, VNO inputs are needed to promote contact with the male, including facilitation of lordosis responses to his mounts. A single subcutaneous injection with gonadotropin-releasing hormone (GnRH) partially reversed the deficit in lordosis behaviour observed in VNOx females suggesting that VNO inputs may reach hypothalamic GnRH neurons to influence the display of sexual behaviour. [source] Netrin 1-mediated chemoattraction regulates the migratory pathway of LHRH neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004Gerald A. Schwarting Abstract Luteinizing hormone-releasing hormone (LHRH) neurons migrate from the vomeronasal organ (VNO) to the forebrain in all mammals studied. In mice, the direction of LHRH neuron migration is dependent upon axons that originate in the VNO, but bypass the olfactory bulb and project caudally into the basal forebrain. Thus, factors that guide this unique subset of vomeronasal axons that comprise the caudal vomeronasal nerve (cVNN) are candidates for regulating the migration of LHRH neurons. We previously showed that deleted in colorectal cancer (DCC) is expressed by neurons that migrate out of the VNO during development [Schwarting et al. (2001) J. Neurosci., 21, 911,919]. We examined LHRH neuron migration in Dcc,/, mice and found that trajectories of the cVNN and positions of LHRH neurons are abnormal. Here we extend these studies to show that cVNN trajectories and LHRH cell migration in netrin 1 (Ntn1) mutant mice are also abnormal. Substantially reduced numbers of LHRH neurons are found in the basal forebrain and many LHRH neurons migrate into the cerebral cortex of Ntn1 knockout mice. In contrast, migration of LHRH cells is normal in Unc5h3rcm mutant mice. These results are consistent with the idea that the chemoattraction of DCC+ vomeronasal axons by a gradient of netrin 1 protein in the ventral forebrain guides the cVNN, which, in turn, determines the direction of LHRH neuron migration in the forebrain. Loss of function through a genetic deletion in either Dcc or Ntn1 results in the migration of many LHRH neurons to inappropriate destinations. [source] Immunohistochemistry of the canine vomeronasal organJOURNAL OF ANATOMY, Issue 3 2003Article first published online: 2 SEP 200 The publisher regrets that in Volume 202, Issue 6 of the Journal of Anatomy, the article Immunohistochemistry of the canine vomeronasal organ by J. C. Dennis et al. was inadvertently printed in black and white. It appears in this issue of the Journal of Anatomy (pp 329338) as it was originally intended. [source] Lectin histochemical studies on the olfactory epithelium and vomeronasal organ in the Japanese striped snake, Elaphe quadrivirgataJOURNAL OF MORPHOLOGY, Issue 10 2010Daisuke Kondoh Abstract The olfactory epithelium and the vomeronasal organ of the Japanese striped snake were examined by lectin histochemistry. Of the 21 lectins used in the study, all lectins except succinylated-wheat germ agglutinin (s-WGA) showed similar binding patterns in the vomeronasal receptor cells and the olfactory receptor cells with varying intensities. The binding patterns of s-WGA varied among individuals in the vomeronasal and olfactory receptor cells, respectively. Four lectins, Bandeiraea simplicifolia lectin-II (BSL-II), Dolichos biflorus agglutinin (DBA), Sophora japonica agglutinin (SJA), and Erythrina cristagalli lectin (ECL) stained secretory granules and the organelles in the olfactory supporting cells and did not stain them in the vomeronasal supporting cells. These results suggest that the glycoconjugate moieties are similar in the vomeronasal and olfactory receptor cells of the Japanese striped snake. J. Morphol., 2010. © 2010 Wiley-Liss, Inc. [source] Olfactory metamorphosis in the Coastal Giant Salamander (Dicamptodon tenebrosus)JOURNAL OF MORPHOLOGY, Issue 1 2005Jeremy T. Stuelpnagel Abstract This study examined the gross morphology and ultrastructure of the olfactory organ of larvae, neotenic adults, and terrestrial adults of the Coastal Giant Salamander (Dicamptodon tenebrosus). The olfactory organ of all aquatic animals (larvae and neotenes) is similar in structure, forming a tube extending from the external naris to the choana. A nonsensory vestibule leads into the main olfactory cavity. The epithelium of the main olfactory cavity is thrown into a series of transverse valleys and ridges, with at least six dorsal and nine ventral valleys lined with olfactory epithelium, and separated by ridges of respiratory epithelium. The ridges enlarge with growth, forming large flaps extending into the lumen in neotenes. The vomeronasal organ is a diverticulum off the ventrolateral side of the main olfactory cavity. In terrestrial animals, by contrast, the vestibule has been lost. The main olfactory cavity has become much broader and dorsoventrally compressed. The prominent transverse ridges are lost, although small diagonal ridges of respiratory epithelium are found in the lateral region of the ventral olfactory epithelium. The posterior and posteromedial wall of the main olfactory cavity is composed of respiratory epithelium, in contrast to the olfactory epithelium found here in aquatic forms. The vomeronasal organ remains similar to that in large larvae, but is now connected to the mouth by a groove that extends back through the choana onto the palate. Bowman's glands are present in the main olfactory cavity at all stages, but are most abundant and best developed in terrestrial adults. They are lacking in the lateral olfactory epithelium of the main olfactory cavity. At the ultrastructural level, in aquatic animals receptor cells of the main olfactory cavity can have cilia, short microvilli, a mix of the two, or long microvilli. Supporting cells are of two types: secretory supporting cells with small, electron-dense secretory granules, and ciliated supporting cells. Receptor cells of the vomeronasal organ are exclusively microvillar, but supporting cells are secretory or ciliated, as in the main olfactory cavity. After metamorphosis two distinct types of sensory epithelium occur in the main olfactory cavity. The predominant epithelium, covering most of the roof and the medial part of the floor, is characterized by supporting cells with large, electron-lucent vesicles. The epithelium on the lateral floor of the main olfactory cavity, by contrast, resembles that of aquatic animals. Both types have both microvillar and ciliated receptor cells. No important changes are noted in cell types of the vomeronasal organ after metamorphosis. A literature survey suggests that some features of the metamorphic changes described here are characteristic of all salamanders, while others appear unique to D. tenebrosus. J. Morphol. © 2005 Wiley-Liss, Inc. [source] Species-specific chemosignals evoke delayed excitation of the vomeronasal amygdala in freely-moving female ratsJOURNAL OF NEUROCHEMISTRY, Issue 3 2006Carla Mucignat-Caretta Abstract Male rat chemosignals attract females and influence their reproductive status. Through the accessory olfactory bulb and its projection target, the posteromedial cortical nucleus of the amygdala (PMCo), species-specific chemosignals detected by the vomeronasal organ (VNO) may reach the hypothalamus. To test this hypothesis in vivo, behavioural activation and neurotransmitter release in the PMCo were simultaneously monitored in freely moving female oestrus rats exposed to either rat or mouse urinary stimuli, or to odorants. Plasma levels of the luteinizing hormone were subsequently monitored. All stimuli induced an immediate behavioural activation, but only species-specific chemosignals led to a delayed behavioural activation. This biphasic behavioural activation was accompanied by a VNO-mediated release of the excitatory amino acids, aspartate and glutamate, in the PMCo. The late behavioural and neurochemical activation was followed by an increase in the levels of circulating luteinizing hormone. In conclusion, these data show that only species-specific chemosignals induce a delayed behavioural activation and excitatory activation of the PMCo, which is dependent on an intact VNO. [source] General organization of the perinatal and adult accessory olfactory bulb in miceTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 9 2006Ignacio Salazar Abstract The vomeronasal system is currently a topical issue since the dual functional specificity, vomeronasal system-pheromones, has recently been questioned. Irrespective of the tools used to put such specificity in doubt, the diversity of the anatomy of the system itself in the animal kingdom is probably of more importance than has previously been considered. It has to be pointed out that a true vomeronasal system is integrated by the vomeronasal organ, the accessory olfactory bulb, and the so-called vomeronasal amygdala. Therefore, it seems reasonable to establish the corresponding differences between a well-developed vomeronasal system and other areas of the nasal cavity in which putative olfactory receptors, perhaps present in other kinds of mammals, may be able to detect pheromones and to process them. In consequence, a solid pattern for one such system in one particular species needs to be chosen. Here we report on an analysis of the general morphological characteristics of the accessory olfactory bulb in mice, a species commonly used in the study of the vomeronasal system, during growth and in adults. Our results indicate that the critical period for the formation of this structure comprises the stages between the first and the fifth day after birth, when the stratification of the bulb, the peculiarities of each type of cell, and the final building of glomeruli are completed. In addition, our data suggest that the conventional plexiform layers of the main olfactory bulb are not present in the accessory bulb. Anat Rec Part A, 288A:1009,1025, 2006. © 2006 Wiley-Liss, Inc. [source] Apical and basal neurones isolated from the mouse vomeronasal organ differ for voltage-dependent currentsTHE JOURNAL OF PHYSIOLOGY, Issue 2 2003Francesca Fieni The mammalian vomeronasal organ (VNO) contains specialized neurones that transduce the chemical information related to pheromones into discharge of action potentials to the brain. Molecular and biochemical studies have shown that specific components of the pheromonal transduction systems are segregated into two distinct subsets of vomeronasal neurones: apical neurones and basal neurones. However, it is still unknown whether these neuronal subsets also differ in other functional characteristics, such as their membrane properties. We addressed this issue by studying the electrophysiological properties of vomeronasal neurones isolated from mouse VNO. We used the patch-clamp technique to examine both the passive membrane properties and the voltage-gated Na+, K+ and Ca2+ currents. Apical neurones were distinguished from basal ones by the length of their dendrites and by their distinct immunoreactivity for the putative pheromone receptor V2R2. The analysis of passive properties revealed that there were no significant differences between the two neuronal subsets. Also, apical neurones were similar to basal neurones in their biophysical and pharmacological properties of voltage-gated Na+ and K+ currents. However, we found that the density of Na+ currents was about 2-3 times greater in apical neurones than in basal neurones. Consistently, in situ hybridization analysis revealed a higher expression of the Na+ channel subtype III in apical neurones than in basal ones. In contrast, basal neurones were endowed with Ca2+ currents (T-type) of greater magnitude than apical neurones. Our findings indicate that apical and basal neurones in the VNO exhibit distinct electrical properties. This might have a profound effect on the sensory processes occurring in the VNO during pheromone detection. [source] Frequency and Localization of the Putative Vomeronasal Organ in Humans in Relation to Age and Gender,THE LARYNGOSCOPE, Issue 3 2001Michael Knecht MD Abstract Objectives/Hypotheses In many species the vomeronasal organ (VNO) serves as a chemosensory organ in addition to the olfactory system. The present investigation was undertaken to study 1) the frequency of monolateral or bilateral detection of the putative VNO (pVNO) in humans, 2) its localization in humans, and 3) whether detectability of the pVNO varies with age or gender. Study Design Prospective. Methods A total of 173 subjects participated in this study (88 women and 85 men; age range, 2,91 y). Inspection of the nose was performed with a speculum and a 30° endoscope. The exact localization of the VNO was measured with custom-built rulers. Results The study revealed the following major results: 1) A pVNO is detectable in approximately two-thirds of the population and bilateral pVNOs are present in approximately 40% of investigated subjects, 2) its localization on the left and right nasal septum is almost symmetrical, and 3) and detectability of the pVNO is not related to age or gender. Conclusions The present data indicated that the pVNO is present in approximately two-thirds of the population. This value may be biased by methodological or biological factors; nevertheless, it indicates that the pVNO is not observed in all humans regardless of age and gender. Thus, considering its variability in shape and immunohistochemical characteristics and the missing nerval connections between the peripheral "organ" and the central nervous system, the present results are not suited to argue for a functional significance of the pVNO in humans. [source] |