Voluntary Alcohol Consumption (voluntary + alcohol_consumption)

Distribution by Scientific Domains


Selected Abstracts


Modulation of Brain Endocannabinoid Levels by Voluntary Alcohol Consumption in Alcohol-Preferring AA Rats

ALCOHOLISM, Issue 10 2009
Hanna Malinen
Background:, The central nervous system cannabinoid CB1 receptors have been implicated in regulation of alcohol consumption. Less data are available on the role of the endogenous ligands for these receptors, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), in alcohol-related behaviors. The purpose of this study was to assess the effects of voluntary alcohol consumption on the levels of these endocannabinoids in key brain areas mediating alcohol reinforcement. Methods:, Female and male alcohol-preferring AA (Alko, Alcohol) rats were trained to drink 10% (v/v) alcohol during 90-min limited access sessions every second day. Following establishment of stable alcohol drinking, half of the subjects were killed immediately before the daily alcohol access ("pre-session" group), while the other half was killed after the drinking session ("post-session" group). A separate control group consisted of water-drinking rats. AEA and 2-AG levels were measured from prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), amygdala, and hippocampus using liquid chromatography,tandem mass spectrometry (LC/MS/MS). Results:, Voluntary alcohol drinking caused widespread alterations in the levels of both AEA and 2-AG. Compared to the water group, increased AEA levels were seen in the pre-session group, but they were decreased immediately following limited access drinking in the female AA rats. Also 2-AG levels were significantly elevated after long alcohol exposure, and an additional increase was found after limited access drinking in PFC. In males, however, the only alterations caused by alcohol drinking were significantly elevated AEA levels in NAc and CPu in the post-session group. No changes were seen in the levels of 2-AG. Conclusions:, These results demonstrate that voluntary alcohol drinking modulates the levels of endocannabinoids in several brain areas implicated in alcohol reinforcement. AEA and 2-AG were differentially affected, suggesting that they could have partially separate modulatory roles. Alterations were more widespread in females than males, possibly reflecting their higher alcohol intake. Taken together, alcohol-induced release of endocannabinoids may have an important role in alcohol reinforcement and development of alcohol addiction. [source]


Gender and Age at Drinking Onset Affect Voluntary Alcohol Consumption but Neither the Alcohol Deprivation Effect nor the Response to Stress in Mice

ALCOHOLISM, Issue 12 2008
Sophie Tambour
Background:, Epidemiological studies suggest that initiation of alcohol drinking at an early age is associated with an increased risk of developing an alcohol use disorder later in life. Nevertheless, relatively few studies using animal models have investigated the relationship between age of onset of drinking and ethanol drinking patterns in adulthood. Besides age at drinking onset, other factors such as gender could also affect the pattern of development of alcohol consumption. In rodents, many studies have shown that females drink more than males. However, even if it is assumed that hormonal changes occurring at puberty could explain these differences, only one study performed in rats has investigated the emergence of sex-specific alcohol drinking patterns in adolescence and the transition from adolescence to adulthood. The aim of the present study was to compare the acquisition of voluntary alcohol consumption, relapse-like drinking (the Alcohol Deprivation Effect,ADE) and stress-induced alcohol drinking in male and female outbred mice that acquired alcohol consumption during adolescence or adulthood. Methods:, Separate groups of naïve female and male WSC-1 mice aged ± 28 days (adolescents) or ±70 days (adults) were given ad libitum access to water and 6% ethanol solution for 8 weeks (1st to 8th week) before undergoing a 2-week deprivation phase (9th and 10th week). After the deprivation period, 2-bottle preference testing (ethanol vs. water) resumed for 3 weeks (11th to 13th). During the 13th week, all animals were subjected to restraint stress for 2 consecutive days. Results:, Over the entire time course of the experiment, ethanol intake and preference increased in females (both adults and adolescents). Adolescent animals (both females and males) showed a transient increase in alcohol consumption and preference compared to adults. However, by the end of continuous alcohol exposure (when all mice were adults), ethanol intake was not affected by age at drinking onset. A deprivation phase was followed by a rise in ethanol intake (ADE) that was not affected by sex or age. Finally, stress did not alter alcohol self-administration either during or after its occurrence. Conclusions:, Emergence of greater alcohol consumption in adult females does not seem to be limited to a specific developmental period (i.e., puberty). Age of voluntary drinking onset (adolescence vs. adulthood) does not affect eventual alcohol intake in adult WSC-1 mice and does not modify the transient increase in ethanol consumption after alcohol deprivation. [source]


The acute anti-craving effect of acamprosate in alcohol-preferring rats is associated with modulation of the mesolimbic dopamine system

ADDICTION BIOLOGY, Issue 3 2005
Michael Cowen
Acamprosate (Campral ?) is a drug used clinically for the treatment of alcoholism. In order to examine further the time-course and mechanism of action of acamprosate, the effect of acute and repeated acamprosate administration was examined on (i) operant ethanol self-administration and (ii) voluntary home cage ethanol consumption by alcohol-preferring Fawn-Hooded, iP and Alko Alcohol (AA) rats. Acutely, acamprosate was shown to cause a significant decrease in operant ethanol self-administration by Fawn-Hooded and alcohol-preferring iP rats in part by decreasing the motivational relevance of a specific ethanol cue; however, repeated injection of acamprosate led to tolerance to this effect. Voluntary alcohol consumption in the home cage in Fawn-Hooded and AA rats was also reduced by an acute acamprosate injection; however, again tolerance developed to repeated injections. In a separate experiment, the effect of acamprosate on markers of the dopaminergic system was examined. Interestingly, acute acamprosate was also shown to cause increased dopamine transporter density and decreased dopamine D2-like receptor density within the nucleus accumbens but not in the caudate-putamen, suggesting a link between the decreased motivational salience of the ethanol cue and altered dopaminergic signalling within the nucleus accumbens. With repeated injections of acamprosate, markers of the dopaminergic system returned to steady state levels with a similar temporal profile to the development of tolerance in the behavioural studies. Along with previous studies, our findings indicate that acamprosate modulates the mesolimbic dopaminergic system and may thereby decrease ethanol reinforcement processes; however, these effects undergo tolerance in alcohol-preferring rats and may in part explain the fact why some subjects are non-responders to chronic acamprosate treatment. [source]


Overlapping Peptide Control of Alcohol Self-Administration and Feeding

ALCOHOLISM, Issue 2 2004
Todd E. Thiele
Abstract: This article represents the proceedings of a symposium at the 2003 annual meeting of the Research Society on Alcoholism in Fort Lauderdale, FL. The organizers and chairpersons were Mark Egli and Todd E. Thiele. The presentations were (1) Voluntary alcohol consumption is modulated by central melanocortin receptors, by Todd E. Thiele; (2) Central infusion of neuropeptide Y reduces alcohol drinking in alcohol-preferring P rats, by Robert B. Stewart and Nancy E. Badia-Elder; (3) The gut peptide cholecystokinin controls alcohol intake in Sardinian alcohol-preferring rats, by Nori Geary and Maurizio Massi; and (4) Hypothalamic galanin: a possible role in excess alcohol drinking, by Sarah F. Leibowitz and Bartley G. Hoebel. [source]


Clinical perspectives for the study of craving and relapse in animal models

ADDICTION, Issue 8s2 2000
Ting-Kai Li
Several major clinical models of alcoholism in which craving plays a role are summarized and key questions are raised regarding the course of craving in the emergence of alcoholism, how it varies in different stages of the disorder (e.g. active alcoholic, withdrawal, protracted abstinence) and what craving may contribute to major signs and symptoms of alcoholism. Turning to animal models, a plea is made for development of a standardized definition of human craving that can be represented and operationalized in animal models. Until there is scientific consensus on such a definition, four ways are elucidated in which animal model research can contribute to advances in our knowledge of human craving and the role it plays in addictive behavior: (1) engaging both basic and clinical researchers to identify parallel constructs of craving and predictors of craving for adoption in comparative human and animal model studies; (2) conducting exploratory research on craving in animal models using relapse to drinking as the dependent measure; (3) identifying mechanisms that underlie clinical signs and symptoms of alcoholism in animal models; and (4) identifying genetic models in basic research that account for variations in response to alcohol that may also occur in humans. This latter point is made in a discussion of the genetic contribution to voluntary alcohol consumption, the alcohol deprivation effect, tolerance and dependence, as illustrated by differences between alcohol-preferring (P) rats and-nonpreferring (NP) rats. The review concludes with four questions and issues that need to be among those that guide future research on craving. [source]


Perception of sweet taste is important for voluntary alcohol consumption in mice

GENES, BRAIN AND BEHAVIOR, Issue 1 2008
Y. A. Blednov
To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: ,-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. [source]


Modulation of Brain Endocannabinoid Levels by Voluntary Alcohol Consumption in Alcohol-Preferring AA Rats

ALCOHOLISM, Issue 10 2009
Hanna Malinen
Background:, The central nervous system cannabinoid CB1 receptors have been implicated in regulation of alcohol consumption. Less data are available on the role of the endogenous ligands for these receptors, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), in alcohol-related behaviors. The purpose of this study was to assess the effects of voluntary alcohol consumption on the levels of these endocannabinoids in key brain areas mediating alcohol reinforcement. Methods:, Female and male alcohol-preferring AA (Alko, Alcohol) rats were trained to drink 10% (v/v) alcohol during 90-min limited access sessions every second day. Following establishment of stable alcohol drinking, half of the subjects were killed immediately before the daily alcohol access ("pre-session" group), while the other half was killed after the drinking session ("post-session" group). A separate control group consisted of water-drinking rats. AEA and 2-AG levels were measured from prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), amygdala, and hippocampus using liquid chromatography,tandem mass spectrometry (LC/MS/MS). Results:, Voluntary alcohol drinking caused widespread alterations in the levels of both AEA and 2-AG. Compared to the water group, increased AEA levels were seen in the pre-session group, but they were decreased immediately following limited access drinking in the female AA rats. Also 2-AG levels were significantly elevated after long alcohol exposure, and an additional increase was found after limited access drinking in PFC. In males, however, the only alterations caused by alcohol drinking were significantly elevated AEA levels in NAc and CPu in the post-session group. No changes were seen in the levels of 2-AG. Conclusions:, These results demonstrate that voluntary alcohol drinking modulates the levels of endocannabinoids in several brain areas implicated in alcohol reinforcement. AEA and 2-AG were differentially affected, suggesting that they could have partially separate modulatory roles. Alterations were more widespread in females than males, possibly reflecting their higher alcohol intake. Taken together, alcohol-induced release of endocannabinoids may have an important role in alcohol reinforcement and development of alcohol addiction. [source]


Gender and Age at Drinking Onset Affect Voluntary Alcohol Consumption but Neither the Alcohol Deprivation Effect nor the Response to Stress in Mice

ALCOHOLISM, Issue 12 2008
Sophie Tambour
Background:, Epidemiological studies suggest that initiation of alcohol drinking at an early age is associated with an increased risk of developing an alcohol use disorder later in life. Nevertheless, relatively few studies using animal models have investigated the relationship between age of onset of drinking and ethanol drinking patterns in adulthood. Besides age at drinking onset, other factors such as gender could also affect the pattern of development of alcohol consumption. In rodents, many studies have shown that females drink more than males. However, even if it is assumed that hormonal changes occurring at puberty could explain these differences, only one study performed in rats has investigated the emergence of sex-specific alcohol drinking patterns in adolescence and the transition from adolescence to adulthood. The aim of the present study was to compare the acquisition of voluntary alcohol consumption, relapse-like drinking (the Alcohol Deprivation Effect,ADE) and stress-induced alcohol drinking in male and female outbred mice that acquired alcohol consumption during adolescence or adulthood. Methods:, Separate groups of naïve female and male WSC-1 mice aged ± 28 days (adolescents) or ±70 days (adults) were given ad libitum access to water and 6% ethanol solution for 8 weeks (1st to 8th week) before undergoing a 2-week deprivation phase (9th and 10th week). After the deprivation period, 2-bottle preference testing (ethanol vs. water) resumed for 3 weeks (11th to 13th). During the 13th week, all animals were subjected to restraint stress for 2 consecutive days. Results:, Over the entire time course of the experiment, ethanol intake and preference increased in females (both adults and adolescents). Adolescent animals (both females and males) showed a transient increase in alcohol consumption and preference compared to adults. However, by the end of continuous alcohol exposure (when all mice were adults), ethanol intake was not affected by age at drinking onset. A deprivation phase was followed by a rise in ethanol intake (ADE) that was not affected by sex or age. Finally, stress did not alter alcohol self-administration either during or after its occurrence. Conclusions:, Emergence of greater alcohol consumption in adult females does not seem to be limited to a specific developmental period (i.e., puberty). Age of voluntary drinking onset (adolescence vs. adulthood) does not affect eventual alcohol intake in adult WSC-1 mice and does not modify the transient increase in ethanol consumption after alcohol deprivation. [source]


Free-Choice Alcohol Consumption in Mice After Application of the Appetite Regulating Peptide Leptin

ALCOHOLISM, Issue 5 2001
F. Kiefer
Background: Leptin has been shown to regulate food intake and energy expenditure. Very recently, associations of elevated leptin plasma levels during alcohol withdrawal with alcohol craving have been observed in humans. Therefore, we tested the hypothesis that the application of exogenous leptin modulates voluntary alcohol consumption in mice. Methods: Sixteen mice (129/Sv x C57BL/6J) were habituated to ethanol consumption over a time period of 3 months. After a basal 2-week free-choice drinking phase, mice were separated into two groups (n= 8) according to weight and alcohol consumption. They received recombinant leptin (1 mg/kg) versus saline intraperitoneally daily for 10 days. After 4 days of free-choice consumption of ethanol (16% v/v) versus water, ethanol was withdrawn at day 4 and replaced at day 6 to test the occurrence of an alcohol deprivation effects. Fluid intake was evaluated by controlling the weight of the drinking tubes daily. Results: Free-choice ethanol consumption after withdrawal was significantly elevated in mice after intraperitoneal injection of 1 mg/kg leptin (alcohol deprivation effect), but not during basal drinking. Conclusion: We suggest that leptin may enhance motivation for alcohol consumption in habituated mice after alcohol withdrawal. [source]