Voltage Gradient (voltage + gradient)

Distribution by Scientific Domains


Selected Abstracts


Entrainment by an Extracellular AC Stimulus in a Computational Model of Cardiac Tissue

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2001
JASON M. MEUNIER B.S.
Sinusoidal Stimulation of Cardiac Sheet.Introduction: Cardiac tissue can be entrained when subjected to sinusoidal stimuli, often responding with action potentials sustained for the duration of the stimulus. To investigate mechanisms responsible for both entrainment and extended action potential duration, computer simulations of a two-dimensional grid of cardiac cells subjected to sinusoidal extracellular stimulation were performed. Methods and Results: The tissue is represented as a bidomain with unequal anisotropy ratios. Cardiac membrane dynamics are governed by a modified Beeler-Reuter model. The stimulus, delivered by a bipolar electrode, has a duration of 750 to 1,000 msec, an amplitude range of 800 to 3,200 ,A/cm, and a frequency range of 10 to 60 Hz. The applied stimuli create virtual electrode polarization (VEP) throughout the sheet. The simulations demonstrate that periodic extracellular stimulation results in entrainment of the tissue. This phase-locking of the membrane potential to the stimulus is dependent on the location in the sheet and the magnitude of the stimulus. Near the electrodes, the oscillations are 1:1 or 1:2 phase-locked; at the middle of the sheet, the oscillations are 1:2 or 1:4 phase-locked and occur on the extended plateau of an action potential. The 1:2 behavior near the electrodes is due to periodic change in the voltage gradient between VEP of opposite polarity; at the middle of the sheet, it is due to spread of electrotonic current following the collision of a propagating wave with refractory tissue. Conclusion: The simulations suggest that formation of VEP in cardiac tissue subjected to periodic extracellular stimulation is of paramount importance to tissue entrainment and formation of an extended oscillatory action potential plateau. [source]


Ionic Mechanisms and Vectorial Model of Early Repolarization Pattern in the Surface Electrocardiogram of the Athlete

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 3 2008
Eduardo C. Barbosa M.D.
Background: The electrocardiogram (ECG) of the athlete displays particular characteristics as a consequence of both electrophysiological and autonomic remodeling of the heart that follows continued physical training. However, doubts persist on how these changes directly interact during ventricular activation and repolarization ultimately affecting surface ECG waveforms in athletes. Objective: This article considers an in deep rationale for the electrocardiographic pattern known as early repolarization based on both electrophysiological mechanisms at cellular level and the vectorial theory of the cardiac activation. Methods: The mechanism by which the autonomic remodeling influences the cardiac electrical activation is reviewed and an insight model of the ventricular repolarization based on ionic models and the vectorial theory of the cardiac activation is proposed. Results: Considering the underlying processes related to ventricular electrical remodeling, we propose that, in athletes' heart: 1) vagal modulation increases regional electrophysiological differences in action potential phases 1 and 2 amplitudes, thus enhancing a voltage gradient between epicardial and endocardial fibers; 2) this gradient affects depolarization and repolarization timing sequences; 3) repolarization wave front starts earlier on ventricular wall and partially overcomes the end of depolarization causing an upward displacement of the J-point, ST segment elevation, and inscription of magnified T-waves amplitudes leading to characteristic surface ECG waveform patterns. Conclusions: In athletes, the association between epicardial to endocardial electrophysiological differences and early repolarization ECG pattern can be demonstrated by the vectorial theory of the ventricular activation and repolarization. [source]


Ohmic heating of dairy fluids,effects of local electric field on temperature distribution

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009
Heng Jin Tham
Abstract This paper presents the heat transfer model of a continuous flow ohmic heating process. The model fluid used was a mixture of reconstituted skimmed milk and whey protein concentrate solution. Two-dimensional numerical simulations of an annular ohmic heater were performed using a general purpose partial differential equation solver, FlexPDE. The momentum, energy, and electrical equations were solved for a laminar flow regime. Two models were used to determine the volumetric heating rate, one taking into account the local electric field by solving the Laplace equation while another model assumes an average voltage gradient applied between the two electrodes. Results show that while the wall temperature distribution is different for the two cases, the bulk fluid temperature and the average outlet temperature are the same. The predicted temperatures generally agree well with the measured temperatures. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


High-resolution computer simulation of the dynamics of isoelectric focusing of proteins

ELECTROPHORESIS, Issue 2 2004
Wolfgang Thormann
Abstract A dynamic electrophoresis simulator that accepts 150 components and voltage gradients employed in the laboratory was used to provide a detailed description of the focusing process of proteins under conditions that were hitherto inaccessible. High-resolution focusing data of four hemoglobin variants in a convection-free medium are presented for pH 3,10 and pH 5,8 gradients formed with 20 and 40 carrier ampholytes/pH unit, respectively. With 300 V/cm, focusing is shown to occur within 5,10 min, whereas at 600 V/cm separation is predicted to be complete between 2.5 and 5 min. The time interval required for focusing of proteins is demonstrated to be dependent on the input protein charge data and, however less, on the properties of the carrier ampholytes. The simulation data reveal that the number of transient protein boundaries migrating from the two ends of the column towards the focusing positions is equal to the number of sample components. Each protein is being focused via the well-known double-peak approach to equilibrium, a process that is also characteristic for focusing of the carrier ampholytes. The predicted focusing dynamics for the hemoglobin variants in pH 3,10 and pH 5,8 gradients are shown to qualitatively agree well with experimental data obtained by whole-column optical imaging. [source]


Temperature Dependences of Leakage Currents of ZnO Varistors Doped with Rare-Earth Oxides

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2010
Jun Hu
Rare-earth oxides are doped into ZnO varistors as grain growth inhibitors for increasing the varistors' voltage gradients. However, their leakage currents become large and their nonlinear coefficients decrease at the same time. The reasonable explanation for such a phenomenon has not yet been available. In this paper, the temperature dependences of varistor samples' leakage currents are investigated, which reveal that the increased leakage currents of ZnO varistors with Y2O3 doping are mainly due to the bypass paths through the intergranular materials at grain corners. [source]