Visuomotor Task (visuomotor + task)

Distribution by Scientific Domains


Selected Abstracts


Estimating the number of independent components for functional magnetic resonance imaging data

HUMAN BRAIN MAPPING, Issue 11 2007
Yi-Ou Li
Abstract Multivariate analysis methods such as independent component analysis (ICA) have been applied to the analysis of functional magnetic resonance imaging (fMRI) data to study brain function. Because of the high dimensionality and high noise level of the fMRI data, order selection, i.e., estimation of the number of informative components, is critical to reduce over/underfitting in such methods. Dependence among fMRI data samples in the spatial and temporal domain limits the usefulness of the practical formulations of information-theoretic criteria (ITC) for order selection, since they are based on likelihood of independent and identically distributed (i.i.d.) data samples. To address this issue, we propose a subsampling scheme to obtain a set of effectively i.i.d. samples from the dependent data samples and apply the ITC formulas to the effectively i.i.d. sample set for order selection. We apply the proposed method on the simulated data and show that it significantly improves the accuracy of order selection from dependent data. We also perform order selection on fMRI data from a visuomotor task and show that the proposed method alleviates the over-estimation on the number of brain sources due to the intrinsic smoothness and the smooth preprocessing of fMRI data. We use the software package ICASSO (Himberg et al. [ 2004]: Neuroimage 22:1214,1222) to analyze the independent component (IC) estimates at different orders and show that, when ICA is performed at overestimated orders, the stability of the IC estimates decreases and the estimation of task related brain activations show degradation. Hum Brain Mapp, 2007. © 2007 Wiley-Liss, Inc. [source]


Features of sequential learning in hemicerebellectomized rats

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2010
L. Mandolesi
Abstract Because the sequencing property is one of the functions in which cerebellar circuits are involved, it is important to analyze the features of sequential learning in the presence of cerebellar damage. Hemicerebellectomized and control rats were tested in a four-choice visuomotor learning task that required both the detection of a specific sequence of correct choices and the acquisition of procedural rules about how to perform the task. The findings indicate that the presence of the hemicerebellectomy did not affect the first phases of detection and acquisition of the sequential visuomotor task, delayed but did not prevent the learning of the sequential task, slowed down speed-up and proceduralization phases, and loosened the reward-response associative structure. The performances of hemicerebellectomized animals in the serial learning task as well as in the open field task demonstrated that the delayed sequential learning task could not be ascribed to impairment of motor functions or discriminative abilities or to low levels of motivation. The delay in sequential learning observed in the presence of a cerebellar lesion appeared to be related mainly to a delay of the automatization of the response. In conclusion, it may be advanced that, through cortical and subcortical connections, the cerebellum provides the acquisition of rapid and accurate sensory-guided sequence of responses. © 2009 Wiley-Liss, Inc. [source]


The role of V5 (hMT+) in visually guided hand movements: an fMRI study

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004
C. Oreja-Guevara
Abstract Electrophysiological studies in animals suggest that visuomotor control of forelimb and eye movements involves reciprocal connections between several areas (striate, extrastriate, parietal, motor and premotor) related to movement performance and visuospatial coding of movement direction. The extrastriate area MT [V5 (hMT+) in humans] located in the ,dorsal pathway' of the primate brain is specialized in the processing of visual motion information. The aim of our study was to investigate the functional role of V5 (hMT+) in the control of visually guided hand movements and to identify the corresponding cortex activation implicated in the visuomotor tasks using functional magnetic resonance imaging. Eight human subjects performed visually guided hand movements, either continuously tracking a horizontally moving target or performing ballistic tracking movements of a cursor to an eccentric stationary target while fixating a central fixation cross. The tracking movements were back-projected onto the screen using a cursor which was moved by an MRI-compatible joystick. Both conditions activated area V5 (hMT+), right more than left, particularly during continuous tracking. In addition, a large-scale sensorimotor circuit which included sensorimotor cortex, premotor cortex, striatum, thalamus and cerebellum as well as a number of cortical areas along the intraparietal sulcus in both hemispheres were activated. Because activity was increased in V5 (hMT+) during continuous tracking but not during ballistic tracking as compared to motion perception, it has a pivotal role during the visual control of forelimb movements as well. [source]


REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys

JOURNAL OF ANATOMY, Issue 1 2005
Christian Grefkes
Abstract In macaque monkeys, the posterior parietal cortex (PPC) is concerned with the integration of multimodal information for constructing a spatial representation of the external world (in relation to the macaque's body or parts thereof), and planning and executing object-centred movements. The areas within the intraparietal sulcus (IPS), in particular, serve as interfaces between the perceptive and motor systems for controlling arm and eye movements in space. We review here the latest evidence for the existence of the IPS areas AIP (anterior intraparietal area), VIP (ventral intraparietal area), MIP (medial intraparietal area), LIP (lateral intraparietal area) and CIP (caudal intraparietal area) in macaques, and discuss putative human equivalents as assessed with functional magnetic resonance imaging. The data suggest that anterior parts of the IPS comprising areas AIP and VIP are relatively well preserved across species. By contrast, posterior areas such as area LIP and CIP have been found more medially in humans, possibly reflecting differences in the evolution of the dorsal visual stream and the inferior parietal lobule. Despite interspecies differences in the precise functional anatomy of the IPS areas, the functional relevance of this sulcus for visuomotor tasks comprising target selections for arm and eye movements, object manipulation and visuospatial attention is similar in humans and macaques, as is also suggested by studies of neurological deficits (apraxia, neglect, Bálint's syndrome) resulting from lesions to this region. [source]