Visible-light Irradiation (visible-light + irradiation)

Distribution by Scientific Domains


Selected Abstracts


Oxysulfides Ln2Ti2S2O5 as Stable Photocatalysts for Water Oxidation and Reduction under Visible-Light Irradiation.

CHEMINFORM, Issue 19 2004
Akio Ishikawa
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


A Comparison Study of Rhodamine,B Photodegradation over Nitrogen-Doped Lamellar Niobic Acid and Titanic Acid under Visible-Light Irradiation

CHEMISTRY - A EUROPEAN JOURNAL, Issue 14 2009
Xiukai Li Dr.
Abstract Slip between the sheets! The intercalation properties of lamellar solid acids have a profound impact on nitrogen doping as well as on the resultant visible-light photocatalysis, and the effects depend strongly on the protonic acidities of the samples (see figure). A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb3O8 and H2Ti4O9) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine,B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb3O8 sample than for the less acidic H2Ti4O9. Compared with the nitrogen-doped KNb3O8 and K2Ti4O9 samples, the nitrogen-doped HNb3O8 and H2Ti4O9 solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb3O8 sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis. [source]


Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation

CHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 6 2009
Rufino
Abstract Splitting image: Sustainable hydrogen production is a key target for the development of alternative, future energy systems that will provide a clean and affordable energy supply. This Minireview focuses on the development of semiconductor catalysts that enable hydrogen production via water splitting upon visible-light irradiation. Sustainable hydrogen production is a key target for the development of alternative, future energy systems that will provide a clean and affordable energy supply. The Sun is a source of silent and precious energy that is distributed fairly all over the Earth daily. However, its tremendous potential as a clean, safe, and economical energy source cannot be exploited unless the energy is accumulated or converted into more useful forms. The conversion of solar energy into hydrogen via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can potentially be generated in a clean and sustainable manner. This Minireview provides an overview of the principles, approaches, and research progress on solar hydrogen production via the water-splitting reaction on photo-semiconductor catalysts. It presents a survey of the advances made over the last decades in the development of catalysts for photochemical water splitting under visible-light irradiation. The Minireview also analyzes the energy requirements and main factors that determine the activity of photocatalysts in the conversion of water into hydrogen and oxygen using sunlight. Remarkable progress has been made since the pioneering work by Fujishima and Honda in 1972, but he development of photocatalysts with improved efficiencies for hydrogen production from water using solar energy still faces major challenges. Research strategies and approaches adopted in the search for active and efficient photocatalysts, for example through new materials and synthesis methods, are presented and analyzed. [source]


Hierarchical ZnS-In2S3 -CuS Nanospheres with Nanoporous Structure: Facile Synthesis, Growth Mechanism, and Excellent Photocatalytic Activity

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2010
Yingxuan Li
Abstract Without using any templates or surfactants, hierarchical ZnS-In2S3 -CuS nanospheres with nanoporous structure are successfully synthesized via a simple and convenient process. The nanospheres are aggregations of densely packed nanoparticles and nanorods. Different to the oriented attachment (OA) mechanism reported in the literature, the formation of these nanorods is believed to follow a lateral OA mechanism (nanoparticles attach along the direction perpendicular to the crystallographic axes with lateral planes as the juncture) based on the experimental data. This process could be a general phenomenon and would provide a new insight into the OA mechanism. A detailed time-resolved TEM kinetic study of the formation of the complex structure is shown. The dipole mechanism and electric field-induced growth are found to be responsible for the final architecture. Photocatalytic activities for water splitting are investigated under visible-light irradiation (, > 400 nm) and an especially high photocatalytic activity (apparent yield of 22.6% at 420 nm) is achieved by unloaded ZnIn0.25Cu0.02S1.395 prepared at 180 °C for 18 h because of their high crystallinity, large pore volume, and the presence of nanorods with special microstructures. [source]


Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4,

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2006
J. Yu
Abstract Highly crystalline monoclinic scheelite BiVO4 powders are synthesized from aqueous Bi(NO3)3 and NH4VO3 solutions over a wide range of pH by a hydrothermal process. BiVO4 powders with various morphologies, surface textures, and grain shapes are selectively synthesized by adjusting the pH. The dependence of the Raman peak position and intensity on the synthesis conditions indicates that the symmetry distortions in the local structure of the synthesized BiVO4 are affected by the preparation conditions. These variations in the local structure result in the modification of the electronic structure of BiVO4, which results in a blue-shift in the UV-vis absorption spectrum of hydrothermally synthesized BiVO4 in comparison with a well-crystallized sample prepared by homogeneous coprecipitation. The photocatalytic activities for O2 evolution from an aqueous AgNO3 solution under visible-light irradiation are strongly dependent on the pH used in the synthesis. The differences in the photocatalytic activities between BiVO4 samples prepared under various conditions is attributed to the degree of structural distortion, leading to differences in the mobility of photogenerated holes formed in the valence band, which consists of Bi,6s and O,2p orbitals. [source]


Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible-Light-Active Photocatalysts

ADVANCED MATERIALS, Issue 12 2009
Li-Wu Zhang
Bi2WO6 ordered porous film with open pores, an example of a photocatalytically active ternary metal oxide under visible-light irradiation, is prepared using a simple and reproducible route. The ordered porous Bi2WO6 films exhibited much higher photocatalytic activity and photocurrent coversion efficiency than nonporous Bi2WO6 films under visible-light irradiation (,,>,420,nm). [source]


Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures

CHEMISTRY - A EUROPEAN JOURNAL, Issue 2 2010
Peng Wang
Abstract By means of a simple ion-exchange process (using different precursors) and a light-induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self-assembled structures,including microrods, irregular balls, and hollow spheres,have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and UV-visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2,mol,%. All the catalysts show strong absorption in the visible-light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible-light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail. [source]


A Comparison Study of Rhodamine,B Photodegradation over Nitrogen-Doped Lamellar Niobic Acid and Titanic Acid under Visible-Light Irradiation

CHEMISTRY - A EUROPEAN JOURNAL, Issue 14 2009
Xiukai Li Dr.
Abstract Slip between the sheets! The intercalation properties of lamellar solid acids have a profound impact on nitrogen doping as well as on the resultant visible-light photocatalysis, and the effects depend strongly on the protonic acidities of the samples (see figure). A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb3O8 and H2Ti4O9) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine,B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb3O8 sample than for the less acidic H2Ti4O9. Compared with the nitrogen-doped KNb3O8 and K2Ti4O9 samples, the nitrogen-doped HNb3O8 and H2Ti4O9 solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb3O8 sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis. [source]


Photosensitization and the Photocurrent Switching Effect in Nanocrystalline Titanium Dioxide Functionalized with Iron(II) Complexes: A Comparative Study

CHEMISTRY - A EUROPEAN JOURNAL, Issue 20 2007
Wojciech Macyk Dr.
Abstract Selected iron(II) complexes (ferrocene, ferrocenylboronic acid, hexacyanoferrate(II)) have been used as photosensitizers of titanium dioxide. Various types of electronic interactions between the surface complex and the semiconducting support are reflected in different yields of photocurrent generated upon visible-light irradiation and different efficiencies of the photosensitization effect. The studied systems, showing the photocurrent switching upon changes of electrode potential and energy of photons (the PEPS effect), are good models of simple photoelectrochemical logic devices. The mechanism of photosensitization and photocurrent switching is discussed with respect to the type of surface-complex,support interaction. Quantum-mechanical calculations support the proposed mechanisms. Wybrane kompleksy ,elaza(II) (ferrocen, kwas ferrocenyloboronowy i heksacyjano,elazian(II)) zosta,y u,yte jako fotosensybilizatory dwutlenku tytanu. Ró,ne typy oddzia,ywa, elektronowych pomi,dzy kompleksami powierzchniowymi a pod,o,em pó,przewodnikowym znajduj, odbicie w ró,nych wydajno,ciach generacji fotopr,du i ró,nym stopniu fotosensybilizacji materia,ów na ,wiat,o widzialne. Wszystkie badane uk,ady wykazuj, efekt fotoelektrochemicznego prze,,czenia fotopr,du na skutek zmian potencja,u fotoelektrody i zmian d,ugo,ci fali ,wiat,a padaj,cego (efekt PEPS), dlatego te, stanowi, bardzo dobre modele prostych prze,,czników fotoelektrochemicznych. Niniejsza praca szczegó,owo okre,la mechanizm fotosensybilizacji i prze,,czenia fotopr,du na podstawie analizy oddzia,ywa, pomi,dzy kompleksem a powierzchni, pó,przewodnika. Obliczenia kwantowo-mechaniczne potwierdzaj, postulowany mechanizm. [source]


Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation

CHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 6 2009
Rufino
Abstract Splitting image: Sustainable hydrogen production is a key target for the development of alternative, future energy systems that will provide a clean and affordable energy supply. This Minireview focuses on the development of semiconductor catalysts that enable hydrogen production via water splitting upon visible-light irradiation. Sustainable hydrogen production is a key target for the development of alternative, future energy systems that will provide a clean and affordable energy supply. The Sun is a source of silent and precious energy that is distributed fairly all over the Earth daily. However, its tremendous potential as a clean, safe, and economical energy source cannot be exploited unless the energy is accumulated or converted into more useful forms. The conversion of solar energy into hydrogen via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can potentially be generated in a clean and sustainable manner. This Minireview provides an overview of the principles, approaches, and research progress on solar hydrogen production via the water-splitting reaction on photo-semiconductor catalysts. It presents a survey of the advances made over the last decades in the development of catalysts for photochemical water splitting under visible-light irradiation. The Minireview also analyzes the energy requirements and main factors that determine the activity of photocatalysts in the conversion of water into hydrogen and oxygen using sunlight. Remarkable progress has been made since the pioneering work by Fujishima and Honda in 1972, but he development of photocatalysts with improved efficiencies for hydrogen production from water using solar energy still faces major challenges. Research strategies and approaches adopted in the search for active and efficient photocatalysts, for example through new materials and synthesis methods, are presented and analyzed. [source]


Multicolor Tunable Emission from Organogels Containing Tetraphenylethene, Perylenediimide, and Spiropyran Derivatives

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2010
Qun Chen
Abstract A dendron-substituted tetraphenylethene low molecular weight gelator (LMWG)compound, LMWG1, is designed and investigated. Gelation-induced fluorescence enhancement is observed for the gel based on LMWG1 and its fluorescence can be reversibly tuned by varying the temperature of the ensemble. The photoinduced energy-transfer can occur between LMWG1 and PI2 (perylene diimide) in the gel phase, but it cannot occur in the corresponding solution. The emission color of the gel of LMWG1 and PI2 can be tuned from cyan, yellow, to red by varying the concentration of PI2. By taking advantage of the photochromic transformation of spiropyran, the emission color of the organogels based on LMWG1 and SP3 can be switched by alternating UV and visible-light irradiations. The emission color can also be tuned by varying the irradiation time. In this way, organogels based on LMWG1 with multiemission color can be achieved in the presence of SP3 after light irradiations. [source]