![]() |
Home About us Contact | ||
![]() |
![]() |
||
Viscoplastic Model (viscoplastic + model)
Selected AbstractsA cyclic viscoelastic,viscoplastic constitutive model for clay and liquefaction analysis of multi-layered groundINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2004Fusao Oka Abstract In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic,viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers. The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de-amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic,viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd. [source] Tensile creep of a long-fibre glass mat thermoplastic (GMT) composite.POLYMER COMPOSITES, Issue 9 2009In Part I of this article, the short-term tensile creep of a 3-mm-thick continuous long-fibre glass mat thermoplastic composite was characterized and found to be linear viscoelastic up to 20 MPa. Subsequently, a nonlinear viscoelastic model has been developed for stresses up to 60 MPa for relatively short creep durations. The creep response was also compared with the same composite material having twice the thickness for a lower stress range. Here in Part II, the work has been extended to characterize and model longer term creep and recovery in the 3-mm composite for stresses up to near failure. Long-term creep tests consisting of 1-day loading followed by recovery were carried out in the nonlinear viscoelastic stress range of the material, i.e., 20,80 MPa in increments of 10 MPa. The material exhibited tertiary creep at 80 MPa and hence data up-to 70 MPa has been used for model development. It was found that viscoplastic strains of about 10% of the instantaneous strains were developed under load. Hence, a non-linear viscoelastic,viscoplastic constitutive model has been developed to represent the considerable plastic strains for the long-term tests. Findley's model which is the reduced form of the Schapery non-linear viscoelastic model was found to be sufficient to model the viscoelastic behavior. The viscoplastic strains were modeled using the Zapas and Crissman viscoplastic model. A parameter estimation method which isolates the viscoelastic component from the viscoplastic part of the nonlinear model has been developed. The model predictions were found to be in good agreement with the average experimental curves. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] Tensile creep of a long-fiber glass mat thermoplastic composite.POLYMER COMPOSITES, Issue 8 2009This work is part of a larger experimental program aimed at developing a semi-empirical constitutive model for predicting creep in random glass mat thermoplastic (GMT) composites. The tensile creep response of a long-fiber GMT material has been characterized for 3- and 6-mm thick material. Tensile tests showed that the variability within and between plaques are comparable with an overall variability of about 6% and 8% for the 3- and 6-mm thick materials, respectively. The thicker material exhibited slightly higher variability and directional dependence due to greater flow during molding of the plaques. Short-term creep tests consisting of 30 min creep and recovery, respectively, were performed over the stress range between 5 and 60 MPa. Three tests for determining the linear viscoelastic region were considered which showed that the 3- and 6-mm thick GMT are linear viscoelastic up to 20 and 25 MPa respectively. The 6-mm thick GMT consisting of a higher fiber weight fraction was linear over wider stress range. Furthermore, it was found that plastic strains were accumulated during creep, which suggests that a nonlinear viscoelastic,viscoplastic model would be more appropriate for long-term creep at relatively high stresses, which will be presented in our companion paper. The magnitude of the plastic strains developed in the creep tests presented here was lower because a single specimen was loaded at multiple stress level over short durations. Hence, a nonlinear viscoelastic constitutive model has been developed for the two thickness materials. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] A fluid mechanical model for granular flow in silosPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2005Caroline Leppert Granular materials may display both solid and fluid like behaviour. For low densities and high strain rates as in avalanches or during the discharge of silos the behaviour is mainly governed by interparticle collisions. On the other hand, frictional contacts characterise the solid state which is represented within the framework of plasticity theory. A fluid like constitutive model describes granular materials when subjected to large deformations and high strain rates. It bases upon a modified viscoplastic model that is valid for both yielded and unyielded regions. The central idea is the distinction between fluid and solid regions by means of comparing actual shear stress and Coulomb yield stress. The application to the simultion of the discharge of silos shows the feasibility of the chosen method. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |