Viscoelastic Solids (viscoelastic + solid)

Distribution by Scientific Domains


Selected Abstracts


Modelling and Simulation of Curing Processes of Epoxy Resin

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2009
Bülent Yagimli
During the curing reaction, the adhesive changes its thermomechanical material behaviour from a viscous fluid to a viscoelastic solid. This phase transition is an exothermal chemical reaction which is accompanied by thermal expansion, chemical shrinkage and changes in temperature. In this work the numerical simulation of the curing process will be presented. The material model for the implementation is presented in [1]. For the implementation of the material model the consistent tangent operator has been derived. In the presentation, experimental data and simulation are shown. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Three-dimensional models of reservoir sediment and effects on the seismic response of arch dams

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2004
O. Maeso
Abstract The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three-dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two-phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time-domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2010
Flavio V. Souza
Abstract Multiscale computational techniques play a major role in solving problems related to viscoelastic composites due to the complexities inherent to these materials. In this paper, a numerical procedure for multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks is proposed in which the (global scale) homogenized viscoelastic incremental constitutive equations have the same form as the local-scale viscoelastic incremental constitutive equations, but the homogenized tangent constitutive tensor and the homogenized incremental history-dependent stress tensor at the global scale depend on the amount of damage accumulated at the local scale. Furthermore, the developed technique allows the computation of the full anisotropic incremental constitutive tensor of viscoelastic solids containing evolving cracks (and other kinds of heterogeneities) by solving the micromechanical problem only once at each material point and each time step. The procedure is basically developed by relating the local-scale displacement field to the global-scale strain tensor and using first-order homogenization techniques. The finite element formulation is developed and some example problems are presented in order to verify the approach and demonstrate the model capabilities. Copyright © 2009 John Wiley & Sons, Ltd. [source]