Vinyl Polymerization (vinyl + polymerization)

Distribution by Scientific Domains


Selected Abstracts


The Relationship of Cycloaddition Reactions to Spontaneous Vinyl Polymerizations

HELVETICA CHIMICA ACTA, Issue 6 2005
Henry
The zwitterionic,biradical tetramethylene proposed by Huisgen as the key intermediate in stepwise [2+2] cycloaddition reactions has been shown to be the crucial intermediate in spontaneous vinyl polymerizations as well. Predominantly biradical tetramethylenes initiate free-radical copolymerizations, while predominantly zwitterionic tetramethylenes initiate cationic or anionic homopolymerizations. Stepwise cycloaddition is viewed as a spontaneous polymerization lacking a propagation step. These tendencies could be correlated in the form of an ,organic chemist's Periodic Table', which has recently been put on a quantitative basis. Huisgen also showed experimentally that [4+2] Woodward,Hoffman -allowed cycloadditions are completely concerted. Spontaneous copolymerizations accompanying these cycloadditions, therefore, were ascribed to the s- trans diene form. This concept was given support by kinetics studies, as well as by exclusive cycloaddition from s- cis cyclopentadiene, and exclusive copolymerization from s- trans verbenene. [source]


Vinyl polymerization of norbornene by mono- and trinuclear nickel complexes with indanimine ligands

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 2 2008
Guangrong Tang
Abstract A series of new indanimine ligands [ArNCC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me (1), R = H (2), and R = Cl (3); Ar = 2,6- i -Pr2C6H3, R = Me (4), R = H (5), and R = Cl (6)) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me (7), R = H (8), and R = Cl (9)) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArNCC2H3(CH3)C6H2(R)O]2 (Ar = 2,6- i -Pr2C6H3, R = Me (10), R = H (11), and R = Cl (12)). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X-ray structure analyses were performed for complexes 7, 10, 11, and 12. After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition-type polynorbornene (PNB) with high molecular weight Mv (106 g mol,1), highly catalytic activities up to 2.18 × 107 gPNB mol,1 Ni h,1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489,500, 2008 [source]


Vinyl polymerization of norbornene by bis(nitro-substituted-salicylaldiminate)nickel(II)/methylaluminoxane catalysts

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2006
Carlo Carlini
Abstract The polymerization of norbornene has been investigated in the presence of different bis(salicylaldiminate)nickel(II) precursors activated by methylaluminoxane. These systems are highly active in affording nonstereoregular vinyl-type polynorbornenes (PNBs) with high molecular weights. The productivity of the catalytic systems is strongly enhanced (up to 35,000 kg of PNB/mol of Ni × h) when electron-withdrawing nitro groups are introduced on the phenol moiety. On the contrary, the presence of bulky alkyl groups on the N -aryl moiety of the ligand does not substantially affect the activity or characteristics of the resulting PNBs. The catalytic performances are also markedly influenced by the reaction parameters, such as the nature of the solvent, the reaction time, and the monomer/Ni and Al/Ni molar ratios. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1514,1521, 2006 [source]


Cyclic alkoxyamine-initiator tethered by azide/alkyne-"click"-chemistry enabling ring-expansion vinyl polymerization providing macrocyclic polymers

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2010
Atsushi Narumi
Abstract A cyclic initiator for the nitroxide-mediated controlled radical polymerization (NMP) is a powerful tool for the preparation of macrocyclic polymers via a ring-expansion vinyl polymerization mechanism. For this purpose, we prepared a Hawker-type NMP-initiator that includes an azide and a terminal alkyne as an acyclic precursor, which is subsequently tethered via an intramolecular azide/alkyne-"click"-reaction, producing the final cyclic NMP-initiator. The polymerization reactions of styrene with cyclic initiator were demonstrated and the resultant polymers were characterized by the gel permeation chromatography (GPC) and the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). These results prove that the ring-expansion polymerization of styrene occurred together with the radical ring-crossover reactions originating from the exchange of the inherent nitroxides generating macrocyclic polystyrenes with higher expanded rings. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3402,3416, 2010 [source]


Radical polymerization behavior of a vinyl monomer bearing five-membered cyclic carbonate structure and reactions of the obtained polymers with amines

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2005
Bungo Ochiai
Abstract Radical polymerization behavior of a vinyl substituted cyclic carbonate, 4-phenyl-5-vinyl-1,3-dioxoran-2-one (1), is described. Radical polymerization of 1 proceeded through selective vinyl polymerization to produce polymers bearing carbonate groups in the side chain, in contrast to that of an oxirane analogue of 1, 1-phenyl-2-vinyl oxirane that proceeds via the selective ring-opening fashion. Although the homopolymerization of 1 produce polymers in relatively lower yield, copolymerizations effectively provided cyclic carbonate-containing copolymers. Nucleophilic addition of primary amines to the resulting homopolymers and copolymers produced the corresponding multifunctional polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 584,592, 2005 [source]


Nickel(II) and palladium(II) complexes with ,-dioxime ligands as catalysts for the vinyl polymerization of norbornene in combination with methylaluminoxane, tris(pentafluorophenyl)borane, or triethylaluminum cocatalyst systems,

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2002
Bernd Berchtold
Abstract Nickel(II) and palladium(II) complexes with ,-dioxime ligands dimethylglyoxime, diphenylglyoxime, and 1,2-cyclohexanedionedioxime represent six new precatalysts for the polymerization of norbornene that can be activated with methylaluminoxane (MAO), the organo-Lewis acid tris(pentafluorophenyl)borane [B(C6F5)3], and triethylaluminum (TEA) AlEt3. The palladium but not the nickel precatalysts could also be activated by B(C6F5)3 alone, whereas two of the three nickel precatalysts but none of the palladium systems are somewhat active with only TEA as a cocatalyst. It was possible to achieve very high polymerization activities up to 3.2 · 107 gpolymer/molmetal · h. With the system B(C6F5)3/AlEt3, the activation process can be formulated as the following two-step reaction: (1) B(C6F5)3 and TEA lead to an aryl/alkyl group exchange and result in the formation of Al(C6F5)nEt3,n and B(C6F5)3,nEtn; and (2) Al(C6F5)nEt3,n will then react with the precatalysts to form the active species for the polymerization of norbornene. Variation of the B:Al ratio shows that Al(C6F5)Et2 is sufficient for high activation. Gel permeation chromatography indicated that it was possible to control the molar mass of poly(norbornene)s by TEA or 1-dodecene as chain-transfer agents; the molar mass can be varied in the number-average molecular weight range from 2 · 103 to 9 · 105 g · mol,1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3604,3614, 2002 [source]


Tetraalkylammonium salt as photoinitiator of vinyl polymerization in organic and aqueous media: A mechanistic and laser flash photolysis study

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2002
María L. Gómez
Abstract N -Dimethyl- N -[2-(N,N -dimethylamino)ethyl]- N -(1-methylnaphthyl)ammonium tetrafluoroborate (I) was synthesized with the aim of obtaining a versatile photoinitiator for vinyl polymerization in organic solvents and water. Salt I was able to trigger the polymerization of acrylamide, 2-hydroxyethylmethacrylate and styrene even at very low concentrations of the salt (,1.0 × 10,5 M). Using laser flash photolysis and fluorescence techniques and analyzing the photoproduct distribution, we were able to postulate a mechanism for the photodecomposition of the salt. With irradiation, I undergoes an intramolecular electron-transfer reaction to form a radical ion pair (RIP). The RIP intermediate decomposes into free radicals. The RIP and the free radicals are active species for initiating the polymerization. Depending on the concentration of the vinyl monomers studied, the initiation mechanism of the polymerization reaction changes. At large monomer concentrations, the RIP state is postulated to trigger the reaction by generating the anion radical of the olefin substrate. At a low monomer concentration, the free radicals produced by the decomposition of I are believed to start the chain reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 901,913, 2002; DOI 10.1002/pola.10166 [source]


Surface-graft hyperbranched polymer via self-condensing atom transfer radical polymerization from zinc oxide nanoparticles

POLYMER ENGINEERING & SCIENCE, Issue 9 2007
Peng Liu
We present the synthesis of hyperbranched polymer grafted zinc oxide (ZnO) hybrid nanoparticles by self-condensing vinyl polymerization (SCVP) via surface-initiated atom transfer radical polymerizations (SI-ATRP) from ZnO surfaces. ATRP initiators were covalently linked to the surfaces of ZnO particles, followed by SCVP of an initiator-monomer ("inimer") which has both a polymerizable group and an initiating group in the same molecule. Well-defined polymer chains were grown from the surfaces to yield hybrid nanoparticles comprised of ZnO cores and hyperbranched polymer shells having multifunctional chlorobenzyl functional end groups. The percentage of grafting (PG%) achieved 429% in 6 h, calculated from the elemental analysis results. The hybrid nanoparticles were also characterized using Fourier transform infrared spectroscopy, UV,vis absorption spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. POLYM. ENG. SCI., 47:1296,1301, 2007. © 2007 Society of Plastics Engineers [source]


Hybrid Polymerization of Vinyl and Hetero-Ring Groups of Glycidyl Methacrylate Resulting in Thermoresponsive Hyperbranched Polymers Displaying a Wide Range of Lower Critical Solution Temperatures

CHEMISTRY - A EUROPEAN JOURNAL, Issue 31 2009
Zhifeng Jia Dr.
Abstract Hybrid polymerization of glycidyl methacrylate (GMA) with potassium hydride (KH) and various oligo(ethylene glycol)s as the initiating system, in which both vinyl polymerization and ring-opening polymerization occur simultaneously, generates hyperbranched poly(ether-ester)s. The reaction process has been followed by an in situ nuclear magnetic resonance technique. The experimental results indicate that both the vinyl and epoxy groups of GMA undergo polymerization, with the reactivity of the latter being much higher than that of the former. Interestingly, the resulting hyperbranched polymers exhibit a sharp phase transition in water at the lower critical solution temperature (LCST). Significantly, the LCST values can be accurately controlled from 0 to 100,°C by changing the hydrophilic/hydrophobic balance of GMA and various oligo(ethylene glycol)s or by modification of the precursor polymer through acetylation. This novel stimuli-responsive hyperbranched polymer is a promising candidate for a new generation of commercially viable thermoresponsive polymers following on from the widely used poly(N- isopropylacrylamide) (PNIPAM). [source]


The Relationship of Cycloaddition Reactions to Spontaneous Vinyl Polymerizations

HELVETICA CHIMICA ACTA, Issue 6 2005
Henry
The zwitterionic,biradical tetramethylene proposed by Huisgen as the key intermediate in stepwise [2+2] cycloaddition reactions has been shown to be the crucial intermediate in spontaneous vinyl polymerizations as well. Predominantly biradical tetramethylenes initiate free-radical copolymerizations, while predominantly zwitterionic tetramethylenes initiate cationic or anionic homopolymerizations. Stepwise cycloaddition is viewed as a spontaneous polymerization lacking a propagation step. These tendencies could be correlated in the form of an ,organic chemist's Periodic Table', which has recently been put on a quantitative basis. Huisgen also showed experimentally that [4+2] Woodward,Hoffman -allowed cycloadditions are completely concerted. Spontaneous copolymerizations accompanying these cycloadditions, therefore, were ascribed to the s- trans diene form. This concept was given support by kinetics studies, as well as by exclusive cycloaddition from s- cis cyclopentadiene, and exclusive copolymerization from s- trans verbenene. [source]