Home About us Contact | |||
View Direction (view + direction)
Selected AbstractsFurstyling on angle-split shell texturesCOMPUTER ANIMATION AND VIRTUAL WORLDS (PREV: JNL OF VISUALISATION & COMPUTER ANIMATION), Issue 2-3 2009Bin Sheng Abstract This paper presents a new method for modeling and rendering fur with a wide variety of furstyles. We simulate virtual fur using shell textures,a multiple layers of textured slices for its generality and efficiency. As shell textures usually suffer from the inherent visual gap errors due to the uniform discretization nature, we present the angle-split shell textures (ASST) approach, which classifies the shell textures into different types with different numbers of texture layers, by splitting the angle space of the viewing angles between fur orientation and view direction. Our system can render the fur with biological patterns, and utilizes vector field and scalar field on ASST to control the geometric variations of the furry shape. Users can intuitively shape the fur by applying the combing, blowing, and interpolating effects in real time. Our approach is intuitive to implement without using complex data structures, with real-time performance for dynamic fur appearances. Copyright © 2009 John Wiley & Sons, Ltd. [source] A System for View-Dependent AnimationCOMPUTER GRAPHICS FORUM, Issue 3 2004Parag Chaudhuri In this paper, we present a novel system for facilitating the creation of stylized view-dependent 3D animation. Our system harnesses the skill and intuition of a traditionally trained animator by providing a convivial sketch based 2D to 3D interface. A base mesh model of the character can be modified to match closely to an input sketch, with minimal user interaction. To do this, we recover the best camera from the intended view direction in the sketch using robust computer vision techniques. This aligns the mesh model with the sketch. We then deform the 3D character in two stages - first we reconstruct the best matching skeletal pose from the sketch and then we deform the mesh geometry. We introduce techniques to incorporate deformations in the view-dependent setting. This allows us to set up view-dependent models for animation. Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Animation 7 Figure 7. Our system takes as input a sketch (a), and a base mesh model (b), then recovers a camera to orient the base mesh (c), then reconstructs the skeleton pose (d), and finally deforms the mesh to find the best possible match with the sketch (e). [source] Artistic Surface Rendering Using Layout of TextCOMPUTER GRAPHICS FORUM, Issue 2 2002Tatiana Surazhsky An artistic rendering method of free-form surfaces with the aid of half-toned text that is laid-out on the given surface is presented. The layout of the text is computed using symbolic composition of the free-form parametric surface S(u, v) with cubic or linear Bézier curve segments C(t) = {cu (t), cv (t)}, comprising the outline of the text symbols. Once the layout is constructed on the surface, a shading process is applied to the text, affecting the width of the symbols as well as their color, according to some shader function. The shader function depends on the surface orientation and the view direction as well as the color and the direction or position of the light source. [source] Generalized minimum-norm perspective shadow mapsCOMPUTER ANIMATION AND VIRTUAL WORLDS (PREV: JNL OF VISUALISATION & COMPUTER ANIMATION), Issue 5 2008Fan Zhang Abstract Shadow mapping has been extensively used for real-time shadow rendering in 3D computer games, though it suffers from the inherent aliasing problems due to its image-based nature. This paper presents an enhanced variant of light space perspective shadow maps to optimize perspective aliasing distribution in possible general cases where the light and view directions are not orthogonal. To be mathematically sound, the generalized representation of perspective aliasing errors has been derived in detail. Our experiments have shown the enhanced shadow quality using our algorithm in dynamic scenes. Copyright © 2008 John Wiley & Sons, Ltd. [source] |