Virus Life Cycle (virus + life_cycle)

Distribution by Scientific Domains


Selected Abstracts


Serum amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system,

HEPATOLOGY, Issue 6 2006
Muriel Lavie
Serum amyloid A (SAA) is an acute phase protein produced by the liver. SAA concentration increases markedly in the serum following inflammation and infection. Large increases in SAA concentration during the acute phase response suggest that SAA has a beneficial role in host defense. This study sought to determine the effect of SAA on hepatitis C virus (HCV) infectivity using retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recently developed cell culture system for HCV (HCVcc). SAA inhibited HCVpp and HCVcc infection in a dose-dependent manner by affecting an early step of the virus life cycle. Further characterization with HCVpp indicated that SAA blocks virus entry by interacting with the viral particle. In addition, the antiviral activity of SAA was strongly reduced when high-density lipoproteins (HDL) were coincubated with SAA. However, HDL had only a slight effect on the antiviral activity of SAA when HCVpp was first preincubated with SAA. Furthermore, analyses of SAA in sera of chronic HCV patients revealed the presence of variable levels of SAA with abnormally elevated concentrations in some cases. However, no obvious clinical correlation was found between SAA levels and HCV viral loads. In conclusion, our data demonstrate an antiviral activity for SAA and suggest a tight relationship between SAA and HDL in modulating HCV infectivity. (HEPATOLOGY 2006;44:1626,1634.) [source]


Co-chaperone BAG3 and adenovirus penton base protein partnership

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2010
E. Gout
Abstract The BAG family of Hsp70/Hsc70 co-chaperones is characterised by the presence of a conserved BAG domain at the carboxyl-terminus. BAG3 protein is the only member of this family containing also the N-terminally located WW domain. We describe here the identification of adenovirus (Ad) penton base protein as the first BAG3 partner recognising BAG3 WW domain. Ad penton base is the viral capsid constituent responsible for virus internalisation. It contains in the N-terminal part two conserved PPxY motifs, known ligands of WW domains. In cells producing Ad penton base protein, cytoplasmic endogenous BAG3 interacts with it and co-migrates to the nucleus. Preincubation of BAG3 with Ad base protein results in only slight modulation of BAG3 co-chaperone activity, suggesting that this interaction is not related to the classical BAG3 co-chaperone function. However, depletion of BAG3 impairs the cell entry of the virus and viral progeny production in Ad-infected cells, suggesting that the interaction between virus penton base protein and cellular co-chaperone BAG3 positively influences virus life cycle. These results thus demonstrate a novel host,pathogen interaction, which contributes to the successful infectious life cycle of adenoviruses. In addition, these data enrich our knowledge about the multifunctionality of the BAG3 co-chaperone. J. Cell. Biochem. 111: 699,708, 2010. © 2010 Wiley-Liss, Inc. [source]


SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine

JOURNAL OF MEDICAL PRIMATOLOGY, Issue 3-4 2000
Aurelio Cafaro
The Tat protein of human immunodeficiency virus (HIV) is produced very early after infection, plays a key role in the virus life cycle and in acquired immunodeficiency syndrome (AIDS) pathogenesis, is immunogenic and well conserved among all virus clades. Notably, a Tat-specific immune response correlates with non-progression to AIDS. Here, we show that a vaccine based on the Tat protein of HIV blocks primary infection with the simian/human immunodeficiency virus (SHIV)89.6P and prevents the CD4 T cell decline and disease onset in cynomolgus monkeys. No signs of virus replication were found in five out of seven vaccinated macaques for almost 1 year of follow-up. Since the inoculated virus (derived from rhesus or from cynomolgus macaques) is shown to be highly pathogenic in cynomolgus macaques, the results indicate efficacy of Tat vaccination in protection against highly pathogenic virus challenge. Finally, the studies of the Tat-specific immunological responses indicate a correlation of protection with a cytotoxic T cell response. Thus, a Tat-based vaccine is a promising candidate for preventive and therapeutic vaccination in humans. [source]


Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2005
Ting Xu
The 34,kDa main proteinase (Mpro) from the severe acute respiratory syndrome coronavirus (SARS-CoV) plays an important role in the virus life cycle through the specific processing of viral polyproteins. As such, SARS-CoV Mpro is a key target for the identification of specific inhibitors directed against the SARS virus. With a view to facilitating the development of such compounds, crystals were obtained of the enzyme at pH 6.5 in the orthorhombic space group P21212 that diffract to a resolution of 1.9,Å. These crystals contain one monomer per asymmetric unit and the biologically active dimer is generated via the crystallographic twofold axis. The conformation of the catalytic site indicates that the enzyme is active in the crystalline form and thus suitable for structure-based inhibition studies. [source]