Home About us Contact | |||
Vertical Stress (vertical + stress)
Selected AbstractsContribution of gravitational potential energy differences to the global stress fieldGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2009Attreyee Ghosh SUMMARY Modelling the lithospheric stress field has proved to be an efficient means of determining the role of lithospheric versus sublithospheric buoyancies and also of constraining the driving forces behind plate tectonics. Both these sources of buoyancies are important in generating the lithospheric stress field. However, these sources and the contribution that they make are dependent on a number of variables, such as the role of lateral strength variation in the lithosphere, the reference level for computing the gravitational potential energy per unit area (GPE) of the lithosphere, and even the definition of deviatoric stress. For the mantle contribution, much depends on the mantle convection model, including the role of lateral and radial viscosity variations, the spatial distribution of density buoyancies, and the resolution of the convection model. GPE differences are influenced by both lithosphere density buoyancies and by radial basal tractions that produce dynamic topography. The global lithospheric stress field can thus be divided into (1) stresses associated with GPE differences (including the contribution from radial basal tractions) and (2) stresses associated with the contribution of horizontal basal tractions. In this paper, we investigate only the contribution of GPE differences, both with and without the inferred contribution of radial basal tractions. We use the Crust 2.0 model to compute GPE values and show that these GPE differences are not sufficient alone to match all the directions and relative magnitudes of principal strain rate axes, as inferred from the comparison of our depth integrated deviatoric stress tensor field with the velocity gradient tensor field within the Earth's plate boundary zones. We argue that GPE differences calibrate the absolute magnitudes of depth integrated deviatoric stresses within the lithosphere; shortcomings of this contribution in matching the stress indicators within the plate boundary zones can be corrected by considering the contribution from horizontal tractions associated with density buoyancy driven mantle convection. Deviatoric stress magnitudes arising from GPE differences are in the range of 1,4 TN m,1, a part of which is contributed by dynamic topography. The EGM96 geoid data set is also used as a rough proxy for GPE values in the lithosphere. However, GPE differences from the geoid fail to yield depth integrated deviatoric stresses that can provide a good match to the deformation indicators. GPE values inferred from the geoid have significant shortcomings when used on a global scale due to the role of dynamically support of topography. Another important factor in estimating the depth integrated deviatoric stresses is the use of the correct level of reference in calculating GPE. We also elucidate the importance of understanding the reference pressure for calculating deviatoric stress and show that overestimates of deviatoric stress may result from either simplified 2-D approximations of the thin sheet equations or the assumption that the mean stress is equal to the vertical stress. [source] Hydraulic pathways in the crystalline rock of the KTBGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000Günter Zimmermann Fracture systems and fluid pathways must be analysed in order to understand the dynamical processes in the upper crust. Various deterministic as well as stochastic fracture networks in the depth section of the Franconian Lineament (6900 to 7140 m), which appears as a brittle ductile shear zone and prominent seismic reflector, were modelled to simulate the hydraulic situation at the two boreholes of the Continental Deep Drilling Program (KTB). They led to estimations of the hydraulic permeability in crystalline rock. The geometrical parameters of the fractures, such as fracture locations and orientations, were determined from structural borehole measurements, which create an image of the borehole wall. The selection of potentially open fractures was decided according to the stress field. Only fractures with the dip direction (azimuth) of the fracture plane perpendicular to the maximum horizontal stress field were assumed to be open. The motivation for this assumption is the fact that the maximum horizontal stress is higher than the vertical stress from the formation, indicating that the state of stress is a strike-slip faulting. Therefore, the probability of open fractures due to this particular stress field at the KTB sites is enhanced. Length scales for fracture apertures and extensions were stochastically varied and calibrated by hydraulic experiments. The mean fracture aperture was estimated to be 25 ,m, assuming an exponential distribution, with corresponding permeability in the range of 10,16 m2. Similar results were also obtained for log-normal and normal distributions, with a variation of permeability of the order of a factor of 2. The influence of the fracture length on permeability of the stochastic networks was also studied. Decreasing the fracture length beyond a specific threshold of 10 m led to networks with vanishing connectivity and hence vanishing permeability. Therefore, we assume a mean fracture length exceeding the threshold of 10 m as a necessary assumption for a macroscopic hydraulically active fracture system at the KTB site. The calculated porosity due to the fracture network is of the order of 10,3 per cent, which at first sight contradicts the estimated matrix porosity of 1 to 2 per cent from borehole measurements and core measurements. It can be concluded from these results, however, that if the fluid transport is due to a macroscopic fracture system, only very low porosity is needed for hydraulic flow with permeabilities up to several 10,16 m2, and hence the contribution of matrix porosity to the hydraulic transport is of a subordinate nature. [source] Analysis of coupled seepage and stress fields in rock mass around the Xiaowan arch damINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 8 2004Chai Junrui Abstract The Xiaowan arch dam, with a maximum height of 292 m, is located across the Lancangjiang River in Yunnan Province of China, and once completed will be the highest arch dam in China. Because of the high water head and the arch action, it is necessary to analyse the interaction between seepage and stress fields in rock mass around the Xiaowan arch dam. Numerical solution of coupled seepage and stress fields in rock mass around the Xiaowan arch dam is analysed by means of the multi-level fracture network model and the finite element method. It can be shown from the computation results that storage of the reservoir makes the seepage field change much, and makes the effective vertical stress in rock foundation near the dam and the tensile stress in the abutment rock mass increase, and that the coupled action between seepage and stress fields should be taken into account. Copyright © 2004 John Wiley & Sons, Ltd. [source] Vertical stress distributions around batter piles driven in cross-anisotropic mediaINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2009Cheng-Der Wang Abstract This work presents analytical solutions to compute the vertical stresses for a cross-anisotropic half-space due to various loading types by batter piles. The loading types are an embedded point load for an end-bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The cross-anisotropic planes are parallel to the horizontal ground surface. The proposed solutions can be obtained by utilizing Wang and Liao's solutions for a horizontal and vertical point load acting in the interior of a cross-anisotropic medium. The derived cross-anisotropic solutions using a limiting approach are in perfect agreement with the isotropic solutions of Ramiah and Chickanagappa with the consideration of pile inclination. Additionally, the present solutions are identical to the cross-anisotropic solutions by Wang for the batter angle equals to 0. The influential factors in yielded solutions include the type and degree of geomaterial anisotropy, pile inclination, and distinct loading types. An example is illustrated to clarify the effect of aforementioned factors on the vertical stresses. The parametric results reveal that the stresses considering the geomaterial anisotropy and pile batter differ from those of previous isotropic and cross-anisotropic solutions. Hence, it is imperative to take the pile inclination into account when piles are required to transmit both the axial and lateral loads in the cross-anisotropic media. Copyright © 2008 John Wiley & Sons, Ltd. [source] |