Vertical Redistribution (vertical + redistribution)

Distribution by Scientific Domains


Selected Abstracts


Enhanced exoenzyme activities in sediments in the presence of deposit-feeding Chironomus riparius larvae

FRESHWATER BIOLOGY, Issue 9 2007
PETER STIEFArticle first published online: 10 JUN 200
Summary 1. The combined effects of deposit-feeding, bioturbation and bioirrigation by benthic macrofauna on the enzymatic hydrolysis of organic matter were studied in microcosms. Chironomus riparius larvae (Insecta, Diptera) served as model macrofauna and stinging nettle leaves (Urtica dioica) were used as a detrital food source. 2. In the upper 10 mm of the sediment (the habitat of C. riparius larvae), the activities of several exoenzymes, the contents of several fractions of particulate organic matter (POM), and the concentrations of dissolved oxidants (O2, NO) were measured on a small scale. Fluorescent particles (luminophores) were used to quantify the vertical redistribution of particles within the same layer. 3. In control sediment, the addition of detrital food enhanced exoenzyme activities in the 0,2 mm layer only. In the presence of C. riparius larvae, exoenzyme activities increased to 10 mm depth. Further, the content of POM in the 0,2 mm layer was lower in the presence than in the absence of larvae, suggesting ingestion and subduction of the added detritus. After prolonged incubation without further food addition, exoenzyme activities returned close to background values in both treatments, whereas the vertical distribution of POM remained unchanged. 4. The overall penetration depth of O2 and NO into the sediment was greater in the presence than the absence of C. riparius, the differences being more pronounced after prolonged incubation. Locally high O2 and NO concentrations due to bioirrigation by C. riparius were measured deep in the sediment. Net downward transport of particles was observed only in the presence of C. riparius larvae and only at the beginning of the incubation. 5. I conclude that deposit-feeding and bioturbation by macrofauna can quickly remove freshly deposited POM from the sediment surface and transfer it to less oxygenated sites (i.e. animal guts and deep sediment layers). Bioirrigation also increases the availability of oxidants deep in the sediment. The oscillation of oxidant supply to POM particles by ingestion,egestion, burial and re-burial, and the intermittent bioirrigation of subsurface sediment, is probably the cause of the increased rate of organic matter hydrolysis, the rate-limiting step in mineralization. [source]


Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories

GLOBAL CHANGE BIOLOGY, Issue 12 2007
TIMOTHY ANDREW QUINE
Abstract The role of soil erosion in the global carbon cycle remains a contested subject. A new approach to the retrospective derivation of erosion-induced quantitative fluxes of carbon between soil and atmosphere is presented and applied. The approach is based on the premise that soil redistribution perturbs the carbon cycle by driving disequilibrium between soil carbon content and input. This perturbation is examined by establishing the difference between measured carbon inventories and the inventories that would be found if input and content were in dynamic equilibrium. The carbon inventory of a profile in dynamic equilibrium is simulated by allowing lateral and vertical redistribution of carbon but treating all other profile inputs as equal to outputs. Caesium-137 is used to derive rates of vertical and lateral soil redistribution. Both point and field-scale estimates of carbon exchange with the atmosphere are derived using the approach for a field subject to mechanized agricultural in the United Kingdom. Sensitivity analysis is undertaken and demonstrates that the approach is robust. The results indicate that, despite a 15% decline in the carbon content of the cultivation layer of the eroded part of the field, this area has acted as a net sink of 11 ± 2 g C m,2 yr,1 over the last half century and that in the field as a whole, soil redistribution has driven a sink of 7 ± 2 g C m,2 yr,1 (6 ± 2 g C m,2 yr,1 if all eroded carbon transported beyond the field boundary is lost to the atmosphere) over the same period. This is the first empirical evidence for, and quantification of, dynamic replacement of eroded carbon. The relatively modest field-scale net sink is more consistent with the identification of erosion and deposition as a carbon sink than a carbon source. There is a clear need to assemble larger databases with which to evaluate critically the carbon sequestration potential of erosion and deposition in a variety of conditions of agricultural management, climate, relief, and soil type. In any case, this study demonstrated that the operation of erosion and deposition processes within the boundaries of agricultural fields must be understood as a key driver of the net carbon cycle consequences of cultivating land. [source]


Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer

ATMOSPHERIC SCIENCE LETTERS, Issue 1 2009
Juan Cuesta
Abstract The Saharan atmospheric boundary layer (SABL) plays a significant role in the atmospheric global circulation and directly affects the vertical redistribution of dust originated in the Sahara, the world's largest dust source. Recent measurements have revealed a variety of new dynamical mechanisms that control the structure of the SABL, which are responsible for exchange between the Saharan convective and residual boundary layers. Using new space-borne laser remote sensing data (CALIPSO) and recently published results, we provide an overview of the following known dynamical mechanisms: diurnal vertical mixing, dynamical lifting (density currents and cold air outbreaks) and topographic effects (mountains and albedo anomalies). Copyright © 2009 Royal Meteorological Society [source]