Vertical Mixing (vertical + mixing)

Distribution by Scientific Domains


Selected Abstracts


Damage to DNA in Bacterioplankton: A Model of Damage by Ultraviolet Radiation and its Repair as Influenced by Vertical Mixing ,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2000
Yannick Huot
ABSTRACT A model of UV-induced DNA damage in oceanic bacterioplankton was developed and tested against previously published and novel measurements of cyclobutane pyrimidine dimers (CPD) in surface layers of the ocean. The model describes the effects of solar irradiance, wind-forced mixing of bacterioplankton and optical properties of the water on net DNA damage in the water column. The biological part includes the induction of CPD by UV radiation and repair of this damage through photoreactivation and excision. The modeled damage is compared with measured variability of CPD in the ocean: diel variation in natural bacterioplankton communities at the surface and in vertical profiles under different wind conditions (net damage as influenced by repair and mixing); in situ incubation of natural assemblages of bacterioplankton (damage and repair, no mixing); and in situ incubation of DNA solutions (no repair, no mixing). The model predictions are generally consistent with the measurements, showing similar patterns with depth, time and wind speed. A sensitivity analysis assesses the effect on net DNA damage of varying ozone thickness, colored dissolved organic matter concentration, chlorophyll concentration, wind speed and mixed layer depth. Ozone thickness and mixed layer depth are the most important factors affecting net DNA damage in the mixed layer. From the model, the total amplification factor (TAF; a relative measure of the increase of damage associated with a decrease in ozone thickness) for net DNA damage in the euphotic zone is 1.7, as compared with 2.1,2.2 for irradiance weighted for damage to DNA at the surface. [source]


The effects of diel changes in circulation and mixing on the longitudinal distribution of phytoplankton in a canyon-shaped Mediterranean reservoir

FRESHWATER BIOLOGY, Issue 9 2010
JAVIER VIDAL
Summary 1. The near-surface distribution of phytoplankton cells along the thalweg of a canyon-shaped reservoir (El Gergal, southern Spain) during two surveys is described and interpreted as the result of time-varying large-scale circulation patterns, vertical mixing processes and the physiological capacity of algal cells to regulate its position in the water column. 2. Vertical gradients of chlorophyll-a concentration developed in the water column during the day but disappeared at night, as a result of the shoaling and deepening of the diurnal mixed layer (dml). The changes in the depth of the dml are largely controlled in El Gergal by convectively driven mixing processes. The longitudinal circulation changes, in turn, as a result of weak and diurnal land-sea breezes. The distribution of algal cells was patchy at all times but did not change during any of the surveys. 3. An expression is proposed to estimate time scales for the development of horizontal patchiness TP based on simple concepts of transport. It is shown that TP is in the order of a week, indicating that horizontal patchiness does not respond immediately to hourly changes in the controlling factors. The magnitude of TP, though, depends on how the vertical distribution of chlorophyll-a and longitudinal currents change on subdiurnal time scales. In particular, TP is sensitive to the lag existing between the momentum and heat fluxes through the free surface, driving circulation and vertical mixing. [source]


A simple model of the eco-hydrodynamics of the epilimnion of Lake Tanganyika

FRESHWATER BIOLOGY, Issue 11 2007
JAYA NAITHANI
Summary 1. The ecosystem response of Lake Tanganyika was studied using a four-component, nutrient,phytoplankton,zooplankton,detritus, phosphorus-based ecosystem model coupled to a nonlinear, reduced-gravity, circulation model. The ecosystem model, an improved version of the earlier eco-hydrodynamics model developed for Lake Tanganyika, was used to estimate the annual primary production of Lake Tanganyika and its spatial and temporal variability. The simulations were driven with the National Centres for Environmental Protection (NCEP) records for winds and solar radiation forcing. 2. The simulated annual cycles of the four ecosystem variables and the daily net primary production were compared with the observations. The comparison showed that simulations reproduced realistically the general features of the annual cycles of epilimnial phosphate, net primary production and plankton dynamics. 3. The climatic simulations for the years 1970,2006 yielded a daily averaged integrated upper layer net production ranging from 0.11 to 1.78 g C m,2 day,1 and daily averaged chlorophyll- a (chl- a) from 0.16 to 4.3 mg m,3. Although the nutrient concentrations in the epilimnion during the strong wind years were high, the net production was low, which is partly because of the greater vertical mixing, produced by strong winds, exposing the phytoplankton to low light conditions in deeper waters. The simulated annual net production and chl- a agreed quite well with observed production available in the literature. 4. We envisage using this model to predict the future scenarios of primary productivity in the lake. [source]


The long-term effect of artificial destratification on phytoplankton species composition in a subtropical reservoir

FRESHWATER BIOLOGY, Issue 6 2005
JASON P. ANTENUCCI
Summary 1. The response of phytoplankton to the installation of an artificial destratification system in North Pine Dam, Brisbane (Australia) was investigated over an 18 year period (1984,2002); 11 years before and 7 years after installation. 2. An overall increase in phytoplankton abundance was revealed for some groups (in particular, diatoms, cyanobacteria and chlorophytes), but not for others (chlorophytes). Changes in the abundance of chlorophyte functional groups was attributed to eutrophication. 3. A strong spatial gradient in phytoplankton abundance and chlorophyll a was observed, with low abundance in the downstream regions affected by the destratification system which was likely because of light limitation induced by vertical mixing. The upstream region acted as a surrogate for the unaltered state of the reservoir, particularly as an indicator of eutrophication without direct influence from the destratification system. Despite the continuous trend in eutrophication of the reservoir, there has been a definite decrease in the rate of eutrophication (approximately 30%) since the installation of the destratification system at the downstream locations. 4. Correlations of the dominant cyanobacteria Cylindrospermopsis raciborskii with other genera changed after destratification, indicating that prior to destratification the dominance of Cylindrospermopsis was because of its ability to compete for phosphorus, whereas after destratification its dominance was because of its ability to compete for light. [source]


A Modular Injection System, Multilevel Sampler, and Manifold for Tracer Tests

GROUND WATER, Issue 6 2003
Brian J. Mailloux
Ground water injection and sampling systems were developed for bacterial transport experiments in both homogenous and heterogeneous unconsolidated, surficial aquifers. Two types of injection systems, a large single tank and a dynamic mixing tank, were designed to deliver more than 800 L of amended ground water to the aquifer over 12 hours, without altering the ground water temperature, pH, Eh, or dissolved gas composition. Two types of multilevel samplers (MLSs) were designed and installed. Permanent MLSs performed well for the homogenous surficial aquifer, but their installation procedure promoted vertical mixing, which could obfuscate experimental data obtained from vertically stratified, heterogeneous aquifers. A novel, removable MLS was designed to fit in 2- and 4-inch wells. Expandable O-rings between each sampling port hydraulically isolated each port for sample collection when a nut was tightened at the land surface. A low-cost vacuum manifold system designed to work with both MLS designs used 50 mL centrifuge tubes to efficiently sample 12 MLS ports with one peristaltic pump head. The integrated system was developed and used during four field campaigns over a period of three years. During each campaign, more than 3000 ground water samples were collected in less than one week. This system should prove particularly useful for ground water tracer, injection, and push-pull experiments that require high-frequency and/or high-density sampling. [source]


An objective definition of the Indian summer monsoon season and a new perspective on the ENSO,monsoon relationship

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 624 2007
Prince K. Xavier
The concept of an interannually varying Indian summer monsoon season is introduced here, considering that the duration of the primary driving of the Indian monsoon,the large-scale meridional gradient of the deep tropospheric heat source,may vary from one year to another. Onset (withdrawal) is defined as the day when the tropospheric heat source shifts from south to north (north to south). This physical principle leads to a new thermodynamic index of the seasonal mean monsoon. While the traditional measure of seasonal rainfall, averaged from 1 June to 30 September, indicates a breakdown of the ENSO,monsoon relationship in recent decades, it is argued that this breakdown is partly due to the inappropriate definition of a fixed monsoon season. With a new physically based definition of the seasonal mean, the ENSO,monsoon relationship has remained steady over the decades. El Niño (La Niña) events contract (expand) the season, and thus decrease (increase) the seasonal mean monsoon by setting up persistent negative (positive) tropospheric temperature (TT) anomalies over the southern Eurasian region. Thus, we propose a new pathway, whereby the Indian summer monsoon could be influenced by remote climatic phenomena via modification of TT over Eurasia. Diagnostics of the onset and withdrawal processes suggest that onset delay is due to the enhanced adiabatic subsidence that inhibits vertical mixing of sensible heating from warm landmass during the pre-monsoon months. On the other hand, the major factor that determines whether the withdrawal is early or late is the horizontal advective cooling. Most of the late (early) onsets and early (late) withdrawals are associated with El Niño (La Niña). This link between the ENSO and the monsoon is realized through vertical and horizontal advections associated with the stationary waves in the upper troposphere set up by the tropical ENSO heating. Copyright © 2007 Royal Meteorological Society [source]


Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer

ATMOSPHERIC SCIENCE LETTERS, Issue 1 2009
Juan Cuesta
Abstract The Saharan atmospheric boundary layer (SABL) plays a significant role in the atmospheric global circulation and directly affects the vertical redistribution of dust originated in the Sahara, the world's largest dust source. Recent measurements have revealed a variety of new dynamical mechanisms that control the structure of the SABL, which are responsible for exchange between the Saharan convective and residual boundary layers. Using new space-borne laser remote sensing data (CALIPSO) and recently published results, we provide an overview of the following known dynamical mechanisms: diurnal vertical mixing, dynamical lifting (density currents and cold air outbreaks) and topographic effects (mountains and albedo anomalies). Copyright © 2009 Royal Meteorological Society [source]