Home About us Contact | |||
Vertical Deformation (vertical + deformation)
Selected AbstractsDeformation and stress change associated with plate interaction at subduction zones: a kinematic modellingGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000Shaorong Zhao The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model, designed to simulate the motion of a subducted slab, can correctly produce the deformation and the main pattern of stress concentration associated with plate coupling at a subduction zone. The validity of the synthesized model is examined and partially verified by analysing the horizontal deformation observed by GPS near the Nankai trough, southwest Japan. [source] Consolidation around stone columns.INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2009Influence of column deformation Abstract A solution is presented for the radial consolidation around stone columns under constant surcharge load. The solution considers the influence of vertical and radial deformation of the column, either in elastic and elastoplastic regimes. The solution is in terms of the average excess pore pressure in the soil. It is based on previous solutions, initially developed for rigid column, or including only vertical deformation. For elastic column, the solution gives the variation of strains and stresses between the undrained and final states, for which it coincides with the existing elastic solutions. All the results are given in closed form, and both the elastic and plastic deformations of the column lead to an equivalent coefficient of consolidation for the radial flow, which enables the application of the existing methods of integration of the consolidation equation. A parametric study is presented, showing the influence of the main problem features. A design example is used to illustrate the application to practical cases. Copyright © 2008 John Wiley & Sons, Ltd. [source] Deformation styles as a key for interpreting glacial depositional environmentsJOURNAL OF QUATERNARY SCIENCE, Issue 6 2003Danny McCarroll Abstract Lithostratigraphical and lithofacies approaches used to interpret glacial sediments often ignore deformation structures that can provide the key to environment of formation. We propose a classification of deformation styles based on the geometry of structures rather than inferred environment of formation. Five styles are recognised: pure shear (P), simple shear (S), compressional (C), vertical (V) and undeformed (U). These dictate the first letter of the codes; the remaining letters conveying the evidence. This information can be used to reconstruct palaeostress fields and to infer physical properties of sediments when they deformed. Individual structures are not diagnostic of particular environments but the suite of structures, their relative scale, stratigraphical relationships, and orientation relative to palaeoslopes and to palaeoice-flow directions can be used to infer the environment in which they formed. This scheme is applied at five sites in west Wales. The typical succession is interpreted as subglacial sediments overlain by meltout tills, flow tills and sediment flows. Paraglacial redistribution of glacial sediments is widespread. Large-scale compressional deformation is restricted to sites where glaciers readvanced. Large-scale vertical deformation occurs where water was locally ponded near the ice margin. There is no evidence for glaciomarine conditions. Copyright © 2003 John Wiley & Sons, Ltd. [source] Borehole deformation measurements and internal structure of some rock glaciers in SwitzerlandPERMAFROST AND PERIGLACIAL PROCESSES, Issue 2 2002Lukas Arenson Abstract In order to understand the mechanical processes that influence the deformation patterns of active rock glaciers, information about local horizontal and vertical deformations as well as knowledge of the internal structure and the temperature distribution is necessary. Results from borehole deformation measurements of three sites in the Swiss Alps show that despite different internal structures, similar phenomena can be observed. In contrast to temperate glaciers, permafrost within rock glaciers has distinct shear zones where horizontal and vertical differential movements are concentrated. In addition, a reduction in volume can be caused by compressive flow due to the presence of air voids within the permafrost. The flow velocity depends on the temperature, the surface and bedrock slopes of the rock glacier, and the composition of the ice-rich frozen ground. Within degrading permafrost, the ice content decreases, the creep velocity increases and the shear zone rises towards the surface, where seasonal temperature changes and the presence of liquid water might also influence deformation. Copyright © 2002 John Wiley & Sons, Ltd. [source] |