Vertical Augmentation (vertical + augmentation)

Distribution by Scientific Domains


Selected Abstracts


Internal Sinus Manipulation (ISM) Procedure: A Technical Report

CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, Issue 3 2007
Jason M. Yamada DDS
ABSTRACT Background, The sinus augmentation procedure has facilitated dental implant treatment in the posterior maxilla where there is insufficient bone for implant placement. A modified Caldwell-Luc, lateral window technique can be applied in most cases needing sinus augmentation in order to create a larger bone volume. However, treatment morbidity can be a concern, especially in the form of postoperative swelling due to surgical trauma. Vertical augmentation using osteotomes has also been selected as a choice of treatment due to less invasive surgery and less postoperative trauma. Although the osteotome technique enables the surgeon to raise the sinus membrane internally through an implant osteotomy site, the quantity and predictability of bone augmentation can be limiting due to the elasticity of the Schneiderian sinus membrane, difficulty of the membrane to separate from the floor as well as the inability to have direct tactile access to "peel" the membrane off of the floor. Purpose, The objective of this report is to present a new, minimally invasive sinus augmentation technique, called the Internal Sinus Manipulation (ISM) procedure, which has been developed to facilitate sinus floor augmentation while reducing treatment morbidity and yet have direct tactile access to raise the membrane off of the sinus floor. Surgical Technique, Access to the Schneiderian sinus membrane is achieved without perforation of the membrane through a conventional osteotomy drilling procedure alone or combined with osteotome technique, followed by reflection of the membrane utilizing special ISM instrumentation and bone graft procedure laterally and vertically through the osteotomy site. A planned implant is then placed. Conclusion, The Internal Sinus Manipulation procedure can be used as an alternative treatment modality for sinus augmentation as compared to the external lateral window technique while reducing postoperative morbidity for the patients who need implant treatment in posterior maxillary areas. [source]


Alveolar ridge augmentation using implants coated with recombinant human growth/differentiation factor-5: histologic observations

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 8 2010
Giuseppe Polimeni
Polimeni G, Wikesjö UME, Susin C, Qahash M, Shanaman RH, Prasad HS, Rohrer MD, Hall J. Alveolar ridge augmentation using implants coated with recombinant human growth/differentiation factor-5: histologic observations. J Clin Periodontol 2010; 37: 759-768 doi: 10.1111/j.1600-051X.2010.01579.x. Abstract Objectives: In vitro and in vivo preclinical studies suggest that growth/differentiation factor-5 (GDF-5) may induce local bone formation. The objective of this study was to evaluate the potential of recombinant human GDF-5 (rhGDF-5) coated onto an oral implant with a purpose-designed titanium porous oxide surface to stimulate local bone formation including osseointegration and vertical augmentation of the alveolar ridge. Materials and Methods: Bilateral, critical-size, 5 mm, supraalveolar peri-implant defects were created in 12 young adult Hound Labrador mongrel dogs. Six animals received implants coated with 30 or 60 ,g rhGDF-5, and six animals received implants coated with 120 ,g rhGDF-5 or left uncoated (control). Treatments were alternated between jaw quadrants. The mucoperiosteal flaps were advanced, adapted, and sutured to submerge the implants for primary intention healing. The animals received fluorescent bone markers at weeks 3, 4, 7, and 8 post-surgery when they were euthanized for histologic evaluation. Results: The clinical examination showed no noteworthy differences between implants coated with rhGDF-5. The cover screw and implant body were visible/palpable through the alveolar mucosa for both rhGDF-5-coated and control implants. There was a small increase in induced bone height for implants coated with rhGDF-5 compared with the control, induced bone height averaging (±SD) 1.6±0.6 mm for implants coated with 120 ,g rhGDF-5 versus 1.2±0.5, 1.2±0.6, and 0.6±0.2 mm for implants coated with 60 ,g rhGDF-5, 30 ,g rhGDF-5, or left uncoated, respectively (p<0.05). Bone formation was predominant at the lingual aspect of the implants. Narrow yellow and orange fluorescent markers throughout the newly formed bone indicate relatively slow new bone formation within 3,4 weeks. Implants coated with rhGDF-5 displayed limited peri-implant bone remodelling in the resident bone; the 120 ,g dose exhibiting more advanced remodelling than the 60 and 30 ,g doses. All treatment groups exhibited clinically relevant osseointegration. Conclusions: rhGDF-5-coated oral implants display a dose-dependent osteoinductive and/or osteoconductive effect, bone formation apparently benefiting from local factors. Application of rhGDF-5 appears to be safe as it is associated with limited, if any, adverse effects. [source]


Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-7 (rhBMP-7/rhOP-1): histological observations

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 6 2010
Cristiano Susin
Susin C, Qahash M, Polimeni G, Lu PH, Prasad HS, Rohrer MD, Hall J, Wikesjö UME. Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-7 (rhBMP-7/rhOP-1): histological observations. J Clin Periodontol 2010; 37: 574,581. doi: 10.1111/j.1600-051X.2010.01554.x. Abstract Background: Pre-clinical studies have shown that recombinant human bone morphogenetic protein-2 (rhBMP-2) coated onto purpose-designed titanium porous-oxide surface implants induces clinically relevant bone formation and osseointegration. The objective of this study was to examine the potential of rhBMP-7, also known as recombinant human osteogenic protein-1 (rhOP-1), coated onto titanium porous-oxide surface implants to support vertical alveolar ridge augmentation and implant osseointegration. Materials and Methods: Bilateral, critical-size, 5 mm, supraalveolar peri-implant defects were created in six young adult Hound Labrador mongrel dogs. The animals received implants coated with rhBMP-7 at 1.5 or 3.0 mg/ml randomized to contra-lateral jaw quadrants. The mucoperiosteal flaps were advanced, adapted, and sutured to submerge the implants for primary intention healing. The animals received fluorescent bone markers at 3, 4, 7, and 8 weeks post-surgery when they were euthanized for histological evaluation. Results: Without striking differences between treatments, the implant sites exhibited a swelling that gradually regressed to become hard to palpation disguising the implant contours. The histological evaluation showed robust bone formation; the newly formed bone assuming characteristics of the contiguous resident bone, bone formation (height and area) averaging 4.1±1.0 versus 3.6±1.7 mm and 3.6±1.9 versus 3.1±1.8 mm2; and bone density 56%versus 50% for implants coated with rhBMP-7 at 1.5 and 3.0 mg/ml, respectively. Both treatments exhibited clinically relevant osseointegration, the corresponding bone,implant contact values averaging 51% and 47%. Notable peri-implant resident bone remodelling was observed for implants coated with rhBMP-7 at 3.0 mg/ml. Conclusions: rhBMP-7 coated onto titanium porous-oxide surface implants induces clinically relevant local bone formation including osseointegration and vertical augmentation of the alveolar ridge, the higher concentration/dose associated with some local side effects. [source]


Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: histologic observations

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 11 2008
Ulf M. E. Wikesjö
Abstract Background: Studies using ectopic rodent, orthotopic canine, and non-human primate models show that bone morphogenetic proteins (BMPs) coated onto titanium surfaces induce local bone formation. The objective of this study was to examine the ability of recombinant human BMP-2 (rhBMP-2) coated onto a titanium porous oxide implant surface to stimulate local bone formation including osseointegration and vertical augmentation of the alveolar ridge. Material and Methods: Bilateral, critical-size, 5 mm, supra-alveolar, peri-implant defects were created in 12 young adult Hound Labrador mongrel dogs. Six animals received implants coated with rhBMP-2 at 0.75 or 1.5 mg/ml, and six animals received implants coated with rhBMP-2 at 3.0 mg/ml or uncoated control. Treatments were randomized between jaw quadrants. The mucoperiosteal flaps were advanced, adapted and sutured to submerge the implants for primary intention healing. The animals received fluorescent bone markers at weeks 3, 4, 7 and 8 post-surgery when they were euthanized for histologic evaluation. Results: Jaw quadrants receiving implants coated with rhBMP-2 exhibited gradually regressing swelling that became hard to palpate disguising the contours of the implants. The histologic evaluation showed robust bone formation reaching or exceeding the implant platform. The newly formed bone exhibited characteristics of the adjoining resident Type II bone including cortex formation for sites receiving implants coated with rhBMP-2 at 0.75 or 1.5 mg/ml. Sites receiving implants coated with rhBMP-2 at 3.0 mg/ml exhibited more immature trabecular bone formation, seroma formation and peri-implant bone remodelling resulting in undesirable implant displacement. Control implants exhibited minimal, if any, bone formation. Thus, implants coated with rhBMP-2 at 0.75, 1.5 and 3.0 mg/ml exhibited significant bone formation (height and area) compared with the sham-surgery control averaging (±SD) 4.4±0.4, 4.2±0.7 and 4.2±1.2 versus 0.8±0.3 mm; and 5.0±2.2, 5.6±2.2 and 7.4±3.5 versus 0.7±0.3 mm2, respectively (p<0.01). All the treatment groups exhibited clinically relevant osseointegration. Conclusions: rhBMP-2 coated onto titanium porous oxide implant surfaces induced clinically relevant local bone formation including vertical augmentation of the alveolar ridge and osseointegration. Higher concentrations/doses were associated with untoward effects. [source]