Versatile Applications (versatile + application)

Distribution by Scientific Domains


Selected Abstracts


Stereoselective Hydroboration of Diynes and Triyne to Give Products Containing Multiple Vinylene Bridges: A Versatile Application to Fluorescent Dyes and Light-Emitting Copolymers.

CHEMINFORM, Issue 5 2005
Taegweon Lee
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


Possibilities of polymer-aided dyeing of cotton fabric with reactive dyes at neutral pH

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010
B. J. Agarwal
Abstract Water-soluble polymers have versatile application, viz., water-soluble polyacrylates have been widely used in the reactive dyeing of cellulosic fibers and the related soaping as an important component of the leveling and washing agent. In this article, one such water-soluble polymer, polyacrylic acid has been synthesized, characterized, and applied in conjunction with various types of reactive dyes, namely triazinyl, vinyl sulfone, high exhaustion, and bifunctional reactive dyes, along with crosslinking agents, namely glycerol 1,3-dichlorohydrin and hexamethylene tetramine-hydroquinone, respectively. One of the crosslinking agents (the former one) has been synthesized in the laboratory. Crosslinking agent is necessary to adhere the dye molecule onto the cellulose macromolecule. Different process sequences have been formulated and explored for dyeing purpose. All such dyeings were carried out at neutral pH. The dyed samples were assessed through color strength in terms of K/S values and their fastness properties were assessed by standard methods. All such dyeings were compared with conventional dyed samples. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Room-temperature RAFT copolymerization of 2-chloroallyl azide with methyl acrylate and versatile applications of the azide copolymers

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2010
Guang Li
Abstract A new vinyl azide monomer, 2-chlorallyl azide (CAA), has been synthesized from commercially available reagent in one step. The reversible addition fragmentation chain transfer (RAFT) copolymerization of CAA with methyl acrylate (MA) was carried out at room temperature using a redox initiator, benzoyl peroxide (BPO)/N,N -dimethylaniline (DMA), in the presence of benzyl 1H -imidazole-1-carbodithioate (BICDT). The polymerization results showed that the process bears the characteristics of controlled/living radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow, and a linear relationship existing between ln([M]0/[M]) and the polymerization time. Chain extension polymerization was performed successfully to prepare block copolymer. Furthermore, the azide copolymers were functionalized by CuI -catalyzed "click" reaction with alkyne-containing poly(ethylene glycol) (PEG) to yield graft copolymers with hydrophilic PEG side chains. Surface modification of the glass sheet was successfully achieved via the crosslinking reaction of the azide copolymer under UV irradiation at ambient temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1348,1356, 2010 [source]


Development of a Quadruple Imaging Modality by Using Nanoparticles

CHEMISTRY - A EUROPEAN JOURNAL, Issue 37 2009
Won Hwang
Abstract The combination of nanotechnology with molecular imaging has great potential for the development of diagnostics and therapeutics, and multimodal imaging enables versatile applications from cell tracking in animals to clinical applications. Herein, we report a multimodal nanoparticle imaging system that is capable of concurrent fluorescence, bioluminescence, bioluminescence resonance energy transfer (BRET), positron emission tomography (PET) and magnetic resonance (MR) imaging in vivo. A cobalt,ferrite nanoparticle surrounded by rhodamine (MF) was conjugated with luciferase (MFB) and p -SCNbnNOTA (2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid) followed by 68GaCl3 (magnetic-fluorescent-bioluminescent-radioisotopic particle, MFBR). Confocal microscopy revealed good transfection efficiency of MFB into cells and BRET was also observed in MFB. A good correlation among rhodamine, luciferase, and 68GaCl3 was found in MFBR, and the activities of each imaging modality increased dose-dependently with the amount of MFBR in the C6 cells. In vivo optical images were acquired from the thighs of mice after intramuscular and subcutaneous injections of MFBR-laden cells. MicroPET and MR images showed intense radioactivity and ferromagnetic intensities with MFBR-laden cells. The multimodal imaging strategy could be used as potential imaging tools to track cells. [source]