Ventromedial Prefrontal Cortex (ventromedial + prefrontal_cortex)

Distribution by Scientific Domains


Selected Abstracts


Decision-making in Parkinson's disease patients with and without pathological gambling

EUROPEAN JOURNAL OF NEUROLOGY, Issue 1 2010
M. Rossi
Background and purpose:, Pathological gambling (PG) in Parkinson's disease (PD) is a frequent impulse control disorder associated mainly with dopamine replacement therapy. As impairments in decision-making were described independently in PG and PD, the objective of this study was to assess decision-making processes in PD patients with and without PG. Methods:, Seven PD patients with PG and 13 age, sex, education and disease severity matched PD patients without gambling behavior were enrolled in the study. All patients were assessed with a comprehensive neuropsychiatric and cognitive evaluation, including tasks used to assess decision-making abilities under ambiguous or risky situations, like the Iowa Gambling Task (IGT), the Game of Dice Task and the Investment Task. Results:, Compared to PD patients without gambling behavior, those with PG obtained poorer scores in the IGT and in a rating scale of social behavior, but not in other decision-making and cognitive tasks. Conclusions:, Low performance in decision-making under ambiguity and abnormal social behavior distinguished PD patients with PG from those without this disorder. Dopamine replacement therapy may induce dysfunction of the ventromedial prefrontal cortex and amygdala-ventral striatum system, thus increasing the risk for developing PG. [source]


Does the medial orbitofrontal cortex have a role in social valuation?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2010
M. P. Noonan
Abstract It has been claimed that social behaviour changes after lesions of the ventromedial prefrontal cortex (vmPFC). However, lesions in humans are rarely restricted to a well defined cortical area. Although vmPFC lesions usually include medial orbitofrontal cortex (mOFC), they typically also affect subgenual and/or perigenual anterior cingulate cortex. The purpose of the current study is to investigate the role of mOFC in social valuation and decision-making. We tested four macaque monkeys prior to and after focal lesions of mOFC. Comparison of the animals' pre- and postoperative performance revealed that, unlike lesions of anterior cingulate gyrus (ACCg), lesions of mOFC did not induce alterations in social valuation. MOFC lesions did, however, induce mild impairments in a probabilistic two-choice decision task, which were not seen after ACCg lesions. In summary, the double dissociation between the patterns of impairment suggest that vmPFC involvement in both decision-making and social valuation may be mediated by distinct subregions centred on mOFC and ACCg respectively. [source]


Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2006
Mouna Maroun
Abstract We have previously shown that high-frequency stimulation to the basolateral amygdala (BLA) induces long-term potentiation (LTP) in the ventromedial prefrontal cortex (vmPFC) and that prior exposure to inescapable stress inhibits the induction of LTP in this pathway [Maroun & Richter-Levin (2003)J. Neurosci., 23, 4406,4409]. Here, we show that the reciprocal pathway projecting from the vmPFC to the BLA is resistant to the induction of LTP. Conversely, long-term depression (LTD) is robustly induced in the BLA in response to low-frequency stimulation to the vmPFC. Furthermore, prior exposure to inescapable stress reverses plasticity in this pathway, resulting in the promotion of LTP and the inhibition of LTD. Our findings suggest that, under normal and safe conditions, the vmPFC is unable to exert excitatory synaptic plasticity over the BLA; rather, LTD, which encodes memory of safety in the BLA, is favoured. Following stressful experiences, LTP in the BLA is promoted to encode memory of fear. [source]


Being liked activates primary reward and midline self-related brain regions

HUMAN BRAIN MAPPING, Issue 4 2010
Christopher G. Davey
Abstract The experience of being liked is a key social event and fundamental to motivating human behavior, though little is known about its neural underpinnings. In this study, we examined the experience of being liked in a group of 15- to 24-year-old: a cohort for whom forming friendships has a great degree of salience, and for whom the explicit representation of relationships is familiar from their frequent use of social networking technologies. Study participants (n = 19) were led to believe that other participants had formed an opinion on their likability based on their appearance in a photograph, and during fMRI scanning viewed the photographs of people who had purportedly responded favorably to them (alongside photographs of control participants). Results indicated that being liked activated primary reward- and self-related regions, including the nucleus accumbens, midbrain (in an area corresponding to the ventral tegmentum), ventromedial prefrontal cortex, posterior cingulate cortex (including retrosplenial cortex), amygdala, and insula/opercular cortex. Participants showed greater activation of ventromedial prefrontal cortex and amygdala in response to being liked by people that they regarded highly compared to those they regarded less so. Finally, being liked by the opposite compared to the same gender activated the right caudal orbitofrontal cortex and right anterior insula: areas important for the representation of primary somatic rewards. This study demonstrates that neural response to being liked has features that are consistent with response to other rewarding events, but it has additional features that reflect its intrinsically interpersonal character. Hum Brain Mapp, 2010. 2009 Wiley-Liss, Inc. [source]


Functional connectivity of default mode network components: Correlation, anticorrelation, and causality

HUMAN BRAIN MAPPING, Issue 2 2009
Lucina Q. Uddin
Abstract The default mode network (DMN), based in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), exhibits higher metabolic activity at rest than during performance of externally oriented cognitive tasks. Recent studies have suggested that competitive relationships between the DMN and various task-positive networks involved in task performance are intrinsically represented in the brain in the form of strong negative correlations (anticorrelations) between spontaneous fluctuations in these networks. Most neuroimaging studies characterize the DMN as a homogenous network, thus few have examined the differential contributions of DMN components to such competitive relationships. Here, we examined functional differentiation within the DMN, with an emphasis on understanding competitive relationships between this and other networks. We used a seed correlation approach on resting-state data to assess differences in functional connectivity between these two regions and their anticorrelated networks. While the positively correlated networks for the vmPFC and PCC seeds largely overlapped, the anticorrelated networks for each showed striking differences. Activity in vmPFC negatively predicted activity in parietal visual spatial and temporal attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based motor control circuits. Granger causality analyses suggest that vmPFC and PCC exert greater influence on their anticorrelated networks than the other way around, suggesting that these two default mode nodes may directly modulate activity in task-positive networks. Thus, the two major nodes comprising the DMN are differentiated with respect to the specific brain systems with which they interact, suggesting greater heterogeneity within this network than is commonly appreciated. Hum Brain Mapp, 2009. 2008 Wiley-Liss, Inc. [source]


Impaired decision making following 49 h of sleep deprivation

JOURNAL OF SLEEP RESEARCH, Issue 1 2006
WILLIAM D. S. KILLGORE
Summary Sleep deprivation reduces regional cerebral metabolism within the prefrontal cortex, the brain region most responsible for higher-order cognitive processes, including judgment and decision making. Accordingly, we hypothesized that two nights of sleep loss would impair decision making quality and lead to increased risk-taking behavior on the Iowa Gambling Task (IGT), which mimics real-world decision making under conditions of uncertainty. Thirty-four healthy participants completed the IGT at rested baseline and again following 49.5 h of sleep deprivation. At baseline, volunteers performed in a manner similar to that seen in most samples of healthy normal individuals, rapidly learning to avoid high-risk decks and selecting more frequently from advantageous low-risk decks as the game progressed. After sleep loss, however, volunteers showed a strikingly different pattern of performance. Relative to rested baseline, sleep-deprived individuals tended to choose more frequently from risky decks as the game progressed, a pattern similar to, though less severe than, previously published reports of patients with lesions to the ventromedial prefrontal cortex. Although risky decision making was not related to participant age when tested at rested baseline, age was negatively correlated with advantageous decision making on the IGT, when tested following sleep deprivation (i.e. older subjects made more risky choices). These findings suggest that cognitive functions known to be mediated by the ventromedial prefrontal cortex, including decision making under conditions of uncertainty, may be particularly vulnerable to sleep loss and that this vulnerability may become more pronounced with increased age. [source]