Ventromedial Nucleus (ventromedial + nucleus)

Distribution by Scientific Domains

Selected Abstracts

Cells of the Arcuate Nucleus and Ventromedial Nucleus of the Ovariectomized Ewe that Respond to Oestrogen: A Study Using Fos Immunohistochemistry

I. J. Clarke
Abstract Oestrogen produces a positive feedback effect on the secretion of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) when implanted into the ventromedial/arcuate nucleus of the ovariectomized (OVX) ewe. This has led to the belief that it is in this area of the hypothalamus that oestrogen causes the preovulatory surge in GnRH/LH. To date, however, the cell types that are integral to this response have not been identified. The present study aimed to examine cellular responsiveness to oestrogen in this region of the brain using Fos immunohistochemistry and further aimed to determine the cell type that shows an acute response to oestrogen. OVX ewes (n = 4,6 per group) were given i.m. injections of oestradiol benzoate or oil (vehicle) and were killed 1,6 h later. Brains were perfused for immunohistochemistry. The number of cells in the arcuate nucleus which were immunopositive for Fos was greater (two- to fourfold) in the oestradiol benzoate-treated OVX ewes (n = 5) 1 h after injection. The number of Fos-positive cells in the ventromedial hypothalamic nucleus was 10-fold greater in the oestradiol benzoate-treated ewes 1 h after injection. Because there were high levels of Fos-immunoreactive cells in oil-treated ewes, we repeated the experiment with i.v. injection of 50 µg oestrogen or vehicle (n = 5). With this latter procedure, we found that oestrogen injection caused a significant increase in the number of Fos immunoreactive cells in the arcuate nucleus within 1 h, but there was no response in the ventromedial hypothalamus. To further characterize the types of cells that might respond to oestrogen, we double-labelled cells for Fos and either adrenocorticotropin hormone, neuropeptide Y or tyrosine hydroxylase (a marker for dopaminergic cells). These cell types could account for less than 30% of the total number of cells that were Fos-positive and oestrogen treatment did not cause an increase in the Fos labelling of any of these types of cell. These data show that oestrogen activates cells of the arcuate/ventromedial hypothalamus within 1 h of injection and that this response could relate to the feedback effects of this gonadal hormone. The majority of cells that produce Fos following oestrogen injection are of unknown phenotype. The data further suggest that induction of cells of the ventromedial hypothalamic nucleus require more prolonged oestrogen stimulus than cells of the arcuate nucelus. [source]

The Effect of Leptin on Luteinizing Hormone Release Is Exerted in the Zona Incerta and Mediated by Melanin-Concentrating Hormone

J. F. Murray
Abstract The adipose hormone, leptin, not only restrains appetite, but also influences energy expenditure. One such influence is to promote sexual maturation and fertility. The neuromodulatory circuits that mediate this effect are not well known but the present study suggests that one mediator could be melanin-concentrating hormone (MCH). We show that the long-form receptor (Ob-Rb) is expressed in the zona incerta of the rat and that administration of leptin (both 0.5 µg and 1.0 µg/side) into this area of ovariectomized, oestrogen-primed rats stimulated the release of luteinizing hormone (LH) within 1 h, the effect enduring for a further 1 h. Injections of leptin into the arcuate nucleus induced a smaller, transient rise in LH while injections into the paraventricular and ventromedial nuclei were without effect. MCH neurones are present in the zona incerta and administration of this hormone into the medial preoptic area (mPOA) stimulates LH release, therefore we investigated the possibility that MCH might mediate this effect of leptin. An injection of MCH antiserum into mPOA prevented the rise in LH normally induced by leptin injected into the zona incerta. In addition, melanocortin receptor antagonists ([D-Arg8]ACTH(4-10) and [Ala6]ACTH(4-10)), previously shown to inhibit the stimulatory effect of MCH on LH release, also inhibited the effect of leptin. We propose that one route by which leptin may promote reproductive activity is by enhancing MCH release from fibres within the mPOA. Speculative mechanisms for the action of MCH include the following possibilities: MCH may be acting on the specific MCH receptor which in turn interacts with a melanocortin or melanocortin-like receptor; MCH may bind directly to one of the melanocortin receptors; or melanocortin antagonists may interact with the MCH receptor. [source]

Glutamate AMPA/kainate receptors, not GABAA receptors, mediate estradiol-induced sex differences in the hypothalamus

Brigitte J. Todd
Abstract Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABAA receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source]

Lesion-induced neurogenesis in the hypothalamus is involved in behavioral recovery in adult ring doves

Gang Chen
Abstract Although neurogenesis in the brain of adult vertebrates is region dependent, lesion induces generation of new neurons in non-neurogenic brain regions. These findings raise the question of the role of new neurons in brain repair and functional recovery. We addressed this question by applying previous observations that electrolytic lesion induced neurogenesis in the ventromedial nucleus (VMN) of the hypothalamus in adult ring doves. Such lesions disrupted the male's courtship behavior, which could be reinstated after rehabilitation with a female. We investigated whether lesion-induced newborn neurons in the VMN facilitate the recovery of courtship behavior in the lesioned birds. We conducted systematic observations of cytological, morphological, and neuroanatomical changes in the lesioned VMN, and concurrently we monitored behavioral changes. Using a multitude of specific cell markers, we found a well-circumscribed cellular zone that proliferated actively. This highly proliferative zone initially appeared along the periphery of the lesion site, where cells had high levels of expression of neuronal, glial, and neurovascular markers. As newborn neurons matured at the lesion site, the necrosis gradually decreased, whereas a downsized proliferative zone relocated to a region ventral to the VMN. Some of the mature neurons were found to project to the midbrain vocal nuclei. Restoration of these projection neurons coincided with the recovery of courtship vocalization. Finally, we found that a social factor, that is, when the male doves were cohoused with a mate, facilitated neurogenesis and behavioral recovery. These results suggest that lesion-induced neurogenesis contributes to behavioral recovery in adult animals. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]

Loss of steroidogenic factor 1 alters cellular topography in the mouse ventromedial nucleus of the hypothalamus

Aline M. Davis
Abstract Knockout (KO) mice lacking the orphan nuclear receptor steroidogenic factor 1 (SF-1) exhibit marked structural abnormalities of the ventromedial nucleus of the hypothalamus (VMH). In this study, we sought to determine the molecular mechanisms underlying the VMH abnormalities. To trace SF-1-expressing neurons, we used a SF-1/enhanced green fluorescent protein (eGFP) transgene. Although the total numbers of eGFP-positive cells in wild-type (WT) and SF-1 KO mice were indistinguishable, cells that normally localize precisely within the VMH were scattered more diffusely in adjacent regions in SF-1 KO mice. This abnormal distribution is likely due to the loss of SF-1 expression in VMH neurons rather than secondary effects of deficient steroidogenesis, as redistribution also was seen in mice with a CNS-specific KO of SF-1. Thus, the absence of SF-1 alters the distribution of cells that normally form the VMH within the mediobasal hypothalamus. Consistent with this model, the hypothalamic expression patterns of the transcription factors islet-1 and nkx2.1 also were displaced in SF-1 KO mice. Independent of gene expression, birthdate analyses further suggested that cells with earlier birthdates were affected more severely by the loss of SF-1 than were later born cells. We conclude that the absence of SF-1 causes major changes in cellular arrangement within and around the developing VMH that result from altered cell migration. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 424,436, 2004 [source]

Sex differences in progesterone receptor immunoreactivity in neonatal mouse brain depend on estrogen receptor , expression

Christine K. Wagner
Abstract Around the time of birth, male rats express higher levels of progesterone receptors in the medial preoptic nucleus (MPN) than female rats, suggesting that the MPN may be differentially sensitive to maternal hormones in developing males and females. Preliminary evidence suggests that this sex difference depends on the activation of estrogen receptors around birth. To test whether estrogen receptor alpha (ER,) is involved, we compared progesterone receptor immunoreactivity (PRir) in the brains of male and female neonatal mice that lacked a functional ER, gene or were wild type for the disrupted gene. We demonstrate that males express much higher levels of PRir in the MPN and the ventromedial nucleus of the neonatal mouse brain than females, and that PRir expression is dependent on the expression of ER, in these regions. In contrast, PRir levels in neocortex are not altered by ER, gene disruption. The results of this study suggest that the induction of PR via ER, may render specific regions of the developing male brain more sensitive to progesterone than the developing female brain, and may thereby underlie sexual differentiation of these regions. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 176,182, 2001 [source]

Projections of RFamide-related Peptide-3 Neurones in the Ovine Hypothalamus, with Special Reference to Regions Regulating Energy Balance and Reproduction

Y. Qi
RFamide-related peptide-3 (RFRP-3) is a neuropeptide produced in cells of the paraventricular nucleus and dorsomedial nucleus of the ovine hypothalamus. In the present study, we show that these cells project to cells in regions of the hypothalamus involved in energy balance and reproduction. A retrograde tracer (FluoroGold) was injected into either the arcuate nucleus, the lateral hypothalamic area or the ventromedial nucleus. The distribution and number of retrogradely-labelled RFRP-3 neurones was determined. RFRP-3 neurones projected to the lateral hypothalamic area and, to a lesser degree, to the ventromedial nucleus and the arcuate nucleus. Double-label immunohistochemistry was employed to identify cells receiving putative RFRP-3 input to cells in these target regions. RFRP-3 cells were seen to project to neuropeptide Y and pro-opiomelanocortin neurones in the arcuate nucleus, orexin and melanin-concentrating hormone neurones in the lateral hypothalamic area, as well as orexin cells in the dorsomedial nucleus and corticotrophin-releasing hormone and oxytocin cells in the paraventricular nucleus. Neurones expressing gonadotrophin-releasing hormone in the preoptic area were also seen to receive input from RFRP-3 projections. We conclude that RFRP-3 neurones project to hypothalamic regions and cells involved in regulation of energy balance and reproduction in the ovine brain. [source]

Role of the Ventromedial Hypothalamic Orexin-1 Receptors in Regulation of Gastric Acid Secretion in Conscious Rats

A. Eliassi
Orexins play an important role on the central nervous system to modulate gastric acid secretion. The orexin receptors are distributed within the hypothalamus, and expression of orexin-1 receptors (OX1R) is greatest in the anterior hypothalamus and ventromedial nucleus. Therefore, we hypothesised that ventromedial hypothalamic OX1R may be involved in the control of gastric acid secretion. To address this question, we examined the effects of orexin-A and a selective OX1R antagonist, SB-3345867, on gastric acid secretion in pyloric-ligated conscious rats. Intraventromedial injection of orexin-A (0.5,2 ,g/,l) stimulated gastric acid secretion in a dose-dependent manner. This stimulatory effect of orexin-A persisted over 3 h. In some experiments, SB-3345867 (10 mg/kg i.p.) was administered 30 min before orexin-A or saline injections. We found that i.p. injection of SB-334867 suppressed stimulated gastric acid secretion induced by orexin-A (2 ,g/,l). Atropine (5 mg/kg) also inhibited the stimulatory effect of central injection of orexin-A on acid secretion. In conclusion, the present study suggests that endogenous orexin-A acts on the ventromedial hypothalamus to stimulates acid secretion. This stimulatory effect is probably mediated through OX1R. [source]

Mechanisms Mediating Oestradiol Modulation of the Developing Brain

M. M. McCarthy
The brain has been known to be a sensitive target organ for the permanent organisational effects of gonadal steroids for close to 50 years. Recent advances have revealed a variety of unexpected cellular mechanisms by which steroids impact on the synaptic profile of hypothalamic nuclei critical to the control of reproduction. This review focuses on three in particular: 1) prostaglandins in the masculinisation of the preoptic area and control of male sexual behaviour; 2) GABA in the arcuate nucleus and potential control of the anterior pituitary; and 3) non-genomic activation of phosphotydolinositol 3 (PI3) kinase and glutamate in the ventromedial nucleus, which is relevant to the control of female reproductive behaviour. The importance of cell-to-cell communication, be it between neurones or between neurones and astrocytes, is highlighted as an essential principle for expanding the impact of steroids beyond those cells that express nuclear receptors. [source]

Sex Differences in the Distribution and Abundance of Androgen Receptor mRNA-Containing Cells in the Preoptic Area and Hypothalamus of the Ram and Ewe

C. J. Scott
Abstract Rams and ewes show a negative-feedback response to peripheral treatment with testosterone, with both sexes having a similar degree of suppression in luteinizing hormone (LH) secretion during the breeding season. At least part of the action of testosterone to suppress gonadotropin-releasing hormone/LH secretion is exerted via interaction with an androgen receptor. The distribution of androgen receptor-containing cells in the hypothalamus has been described for the ram, but similar studies have not been performed in the ewe. In the present study, we tested the hypothesis that levels of androgen receptor mRNA expression in the preoptic area and hypothalamus would be similar in rams and ewes. Perfusion-fixed brain tissue was obtained from adult Romney Marsh ewes (luteal phase) and rams during the breeding season (n = 4/sex). Androgen receptor mRNA expression was quantified in hypothalamic sections by in situ hybridization using an 35S-labelled riboprobe and image analysis. Hybridizing cells were found in the medial preoptic area, bed nucleus of the stria terminalis, anterior hypothalamic area, ventromedial nucleus, arcuate nucleus and premamillary nucleus. The level of androgen receptor mRNA expression was higher in rams than ewes in the rostral preoptic area, caudal preoptic area and rostral portion of the bed nucleus of the stria terminalis, with no sex difference in other regions. The preoptic area and bed nucleus of the stria terminalis are important for reproductive behaviour and the sex differences in androgen receptor mRNA expression at these levels may relate to this. The high level of androgen receptor mRNA expression in the basal hypothalamus, with no sex difference, is consistent with the role of this region in the regulation of gonadotropin secretion. [source]

Changes in Preoptic and Hypothalamic Levels of Progesterone Receptor mRNA Across the Oestrous Cycle of the Ewe

C. J. Scott
Abstract We measured the levels of progesterone receptor (PR) mRNA in the hypothalamus and preoptic area (POA) of the ewe across the oestrous cycle. Perfusion-fixed hypothalamic tissue was collected from sheep killed during the luteal and follicular phases and during behavioural oestrus. Blood samples taken at the time of tissue collection verified that the oestrous ewes were undergoing a preovulatory luteinizing hormone (LH) surge. Matched sections were taken from the POA, periventricular nucleus (PeVN), ventromedial nucleus (VMN) and arcuate nucleus of each animal. In situ hybridization was performed using a sheep specific, 35S-labelled riboprobe for PR and semiquantitative image analysis was conducted on emulsion-dipped slides. The number of silver grains per cell was greater in the VMN and arcuate nucleus of oestrous ewes than in luteal and follicular phase ewes; there was no cyclic variation in the level of PR mRNA expression in the cells of the POA and PeVN. The number of labelled cells per mm2 in the VMN was higher in the oestrous ewes than in luteal phase and follicular phase ewes. The number of labelled cells in the PeVN was also higher in the oestrous ewes than in follicular phase ewes, but there was no cyclic variation in the POA and arcuate nucleus. In the ewe, the onset of behavioural oestrus corresponds to the onset of the preovulatory LH surge and increased PR mRNA expression at this time is likely to be due to the high concentrations of circulating oestrogen that precede this period. [source]

Hypothalamic Vasopressin Gene Expression Increases in Both Males and Females Postpartum in a Biparental Rodent

Z. X. Wang
In previous studies, the closely related neuropeptide hormones oxytocin and vasopressin have been implicated in the central mediation of parental behaviour. Several studies in rats and sheep have demonstrated a role for oxytocin in the initiation of maternal behaviour. Recently, a few studies in a biparental species, the prairie vole (Microxytocinus ochrogaster) have suggested that vasopressin is important for paternal care. The present study investigated this latter possibility by measuring changes in vasopressin and oxytocin hypothalamic gene expression 1 day and 6 days following parturition in prairie voles which show paternal care and in montane voles (M. montanus) which lack paternal care. In prairie voles, vasopressin gene expression increased in both males and females postpartum, relative to sexually naive controls. In the non-paternal montane vole, no change in vasopressin gene expression was observed in either sex. In contrast to this species difference in vasopressin gene expression, hypothalamic oxytocin gene expression increased in both prairie and montane vole females, but not in males of either species. To augment measures of gene expression, we assessed vasopressin (V1a) and oxytocin receptor binding in both species. Although forebrain vasopressin V1a receptor binding was not altered following parturition in either species, oxytocin receptor binding increased in the ventromedial nucleus of the hypothalamus in females, but not males, in both prairie and montane voles. In summary, vasopressin gene expression increases in both males and females postpartum in a biparental species and oxytocin gene expression and receptor binding increase selectively in females. These results are consistent with earlier reports of a role for vasopressin in paternal care and for oxytocin in maternal behaviour. [source]

Distribution of the protein IMPACT, an inhibitor of GCN2, in the mouse, rat, and marmoset brain

Simone Bittencourt
Abstract IMPACT is an inhibitor of GCN2, a kinase that phosphorylates the alpha subunit of the translation initiation factor 2 (eIF2,). GCN2 has been implicated in regulating feeding behavior and learning and memory in mice. IMPACT is highly abundant in the brain, suggesting its relevance in the control of GCN2 activation in the central nervous system. We describe here the distribution of IMPACT in the brain of rodents (mice and rats) and of a primate (marmoset) using highly specific antibodies raised against the mouse IMPACT protein. Neurons expressing high levels of IMPACT were found in most areas of the brain. In the hippocampal formation the lack of IMPACT in the dentate gyrus granule cells was striking. The hypothalamus is exceptionally rich in neurons expressing high levels of IMPACT, particularly in the suprachiasmatic nucleus. The only exception to this pattern was the ventromedial nucleus. The thalamic neurons are mostly devoid of IMPACT, with the exception of the paraventricular, reuniens and reticular nuclei, and intergeniculate leaf. The brainstem displayed high levels of IMPACT. For the marmoset, IMPACT expression in the brain is not as prominent when compared to other organs. In the marmoset brain the pattern of IMPACT expression was similar to rodents in most areas, except for the very strong labeling of the Purkinje cells, the lack of IMPACT-positive neurons in the nucleus reuniens, and weak labeling of interneurons in the hippocampus. GCN1, the activator of GCN2 to which IMPACT binds, is widely distributed in all neuronal populations, and all IMPACT-positive cells were also GCN1-positive. The data presented herein suggest that IMPACT may be involved in biochemical homeostatic mechanisms that would prevent GCN2 activation and therefore ATF4 (CREB-2) synthesis in neurons. J. Comp. Neurol. 507:1811,1830, 2008. © 2008 Wiley-Liss, Inc. [source]

Impact of glucose infusion on the structural and functional characteristics of adipose tissue and on hypothalamic gene expression for appetite regulatory neuropeptides in the sheep fetus during late gestation

B. S. Mühlhäusler
In the present study, our aim was to determine whether intrafetal glucose infusion increases fetal adiposity, synthesis and secretion of leptin and regulates gene expression of the ,appetite regulatory' neuropeptides neuropepetide Y (NPY), agouti-related peptide (AGRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) and receptors (leptin receptor (OB-Rb) and melancortin 3 receptor (MC3R)) within the fetal hypothalamus. Glucose (50% dextrose in saline) or saline was infused (7.5 ml h,1) into fetal sheep between 130 and 140 days gestation (term = 150 ± 3 days gestation). Glucose infusion increased circulating glucose and insulin concentrations, mean lipid locule size (532.8 ± 3.3 ,m2versus 456.7 ± 14.8 ,m2) and total unilocular fat mass (11.7 ± 0.6 g versus 8.9 ± 0.6 g) of the perirenal fat depot. The expression of OB-Rb mRNA was higher in the ventromedial nucleus compared to the arcuate nucleus of the hypothalamus in both glucose and saline infused fetuses (F= 8.04; P < 0.01) and there was a positive correlation between expression of OB-Rb and MC3R mRNA in the arcuate nucleus (r= 0.81; P < 0.005). Glucose infusion increased mRNA expression for POMC, but not for the anorectic neuropeptide CART, or the orexigenic neuropeptides NPY and AGRP, in the arcuate nucleus of the fetal hypothalamus. These findings demonstrate that increased circulating glucose and insulin regulate gene expression of the neuropeptides within the fetal hypothalamus that are part of the neural network regulating energy balance in adult life. [source]

Expression of proopiomelanocortin and proenkephalin mRNA in sexually dimorphic brain regions are altered in adult male and female rats treated prenatally with morphine

Abstract:, The present study demonstrates that prenatal morphine exposure on gestation days 11,18 differentially alters proopiomelanocortin (POMC) and proenkephalin (pENK) mRNA in the hypothalamus and limbic system of adult male and female rats. In adult, prenatally morphine-exposed male rats POMC mRNA levels are decreased in the arcuate nucleus of the hypothalamus (ARC), while the pENK mRNA levels are increased in the paraventricular nucleus of the hypothalamus (PVN) and in the ventrolateral subdivision of the ventromedial nucleus of the hypothalamus (VMH), specifically in the ventrolateral subdivision of the VMH. In adult, prenatally morphine-exposed female rats, POMC mRNA levels in the ARC are increased in ovariectomized (OVX) but not in OVX, estradiol benzoate- (EB) or EB- and progesterone- (P) treated females. In contrast, pENK mRNA levels are decreased in the VMH of morphine-exposed, OVX females and increased in EB-treated females. Further, prenatal morphine exposure decreases pENK mRNA in the ARC and increases it in the medial pre-optic area independently of female gonadal hormones. Finally, POMC mRNA levels are increased in the ARC of saline-exposed, EB- or EB- and P-treated females but not in OVX females. Thus, the present study suggests that prenatal morphine exposure sex and brain region specifically alters the level of POMC and pENK mRNA. [source]