Velocity Variations (velocity + variation)

Distribution by Scientific Domains

Kinds of Velocity Variations

  • radial velocity variation


  • Selected Abstracts


    Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel

    ELECTROPHORESIS, Issue 5 2010
    Yasaman Daghighi
    Abstract A major challenge in lab-on-a-chip devices is how to concentrate sample molecules from a dilute solution, which is critical to the effectiveness and the detection limit of on-chip bio-chemical reactions. A numerical study of sample concentration control by electrokinetic microfluidic means in a closed-end microchannel is presented in this paper. The present method provides a simple and efficient way of concentration control by using electrokinetic trapping of a charged species of interest, controlling liquid flow and separating different sample molecules in the microchannel. The electrokinetic-concentration process and the controlled transport of the sample molecules are numerically studied. In this system, in addition to the electroosmotic flow and the electrophoresis, the closed-end of the chamber causes velocity variation at both ends of the channel and induces a pressure gradient and the associated fluid movement in the channel. The combined effects determine the final concentration field of the sample molecules. The influences of a number of parameters such as the channel dimensions, electrode size and the applied electric field are investigated. [source]


    Out-of-plane geometrical spreading in anisotropic media

    GEOPHYSICAL PROSPECTING, Issue 4 2002
    Norman Ettrich
    Two-dimensional seismic processing is successful in media with little structural and velocity variation in the direction perpendicular to the plane defined by the acquisition direction and the vertical axis. If the subsurface is anisotropic, an additional limitation is that this plane is a plane of symmetry. Kinematic ray propagation can be considered as a two-dimensional process in this type of medium. However, two-dimensional processing in a true-amplitude sense requires out-of-plane amplitude corrections in addition to compensation for in-plane amplitude variation. We provide formulae for the out-of-plane geometrical spreading for P- and S-waves in transversely isotropic and orthorhombic media. These are extensions of well-known isotropic formulae. For isotropic and transversely isotropic media, the ray propagation is independent of the azimuthal angle. The azimuthal direction is defined with respect to a possibly tilted axis of symmetry. The out-of-plane spreading correction can then be calculated by integrating quantities which describe in-plane kinematics along in-plane rays. If, in addition, the medium varies only along the vertical direction and has a vertical axis of symmetry, no ray tracing need be carried out. All quantities affecting the out-of-plane geometrical spreading can be derived from traveltime information available at the observation surface. Orthorhombic media possess no rotational symmetry and the out-of-plane geometrical spreading includes parameters which, even in principle, are not invertible from in-plane experiments. The exact and approximate formulae derived for P- and S-waves are nevertheless useful for modelling purposes. [source]


    Depth imaging in anisotropic media by symmetric non-stationary phase shift

    GEOPHYSICAL PROSPECTING, Issue 3 2002
    Robert J. Ferguson
    ABSTRACT We present a new depth-imaging method for seismic data in heterogeneous anisotropic media. This recursive explicit method uses a non-stationary extrapolation operator to allow lateral velocity variation, and it uses the relationship between phase angle and the spectral coordinates of seismic data to allow velocity variation with phase angle. A qualitative comparison of migration impulse responses suggests that, for an equivalent cost, the symmetric non-stationary phase-shift (SNPS) operator is superior to the phase-shift plus interpolation (PSPI) operator, for very large depth intervals. To demonstrate the potential of the new method, seismic data from a physical model acquired over a transversely isotropic medium are imaged using a shot-record migration based on the SNPS operator. [source]


    Seismogenic Structure around the Epicenter of the May 12, 2008 Wenchuan Earthquake from Micro-seismic Tomography

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
    Meijian AN
    Abstract: A three-dimensional local-scale P -velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of ,2 km. The high-resolution P -velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least ,10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu-Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respe tively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a ,7 km offset with ,5 km vertical component. [source]


    Deep Background of Wenchuan Earthquake and the Upper Crust Structure beneath the Longmen Shan and Adjacent Areas

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
    Qiusheng LI
    Abstract: By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of ,20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake. [source]


    2-D/3-D multiply transmitted, converted and reflected arrivals in complex layered media with the modified shortest path method

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009
    Chao-Ying Bai
    SUMMARY Grid-cell based schemes for tracing seismic arrivals, such as the finite difference eikonal equation solver or the shortest path method (SPM), are conventionally confined to locating first arrivals only. However, later arrivals are numerous and sometimes of greater amplitude than the first arrivals, making them valuable information, with the potential to be used for precise earthquake location, high-resolution seismic tomography, real-time automatic onset picking and identification of multiple events on seismic exploration data. The purpose of this study is to introduce a modified SPM (MSPM) for tracking multiple arrivals comprising any kind of combination of transmissions, conversions and reflections in complex 2-D/3-D layered media. A practical approach known as the multistage scheme is incorporated into the MSPM to propagate seismic wave fronts from one interface (or subsurface structure for 3-D application) to the next. By treating each layer that the wave front enters as an independent computational domain, one obtains a transmitted and/or converted branch of later arrivals by reinitializing it in the adjacent layer, and a reflected and/or converted branch of later arrivals by reinitializing it in the incident layer. A simple local grid refinement scheme at the layer interface is used to maintain the same accuracy as in the one-stage MSPM application in tracing first arrivals. Benchmark tests against the multistage fast marching method are undertaken to assess the solution accuracy and the computational efficiency. Several examples are presented that demonstrate the viability of the multistage MSPM in highly complex layered media. Even in the presence of velocity variations, such as the Marmousi model, or interfaces exhibiting a relatively high curvature, later arrivals composed of any combination of the transmitted, converted and reflected events are tracked accurately. This is because the multistage MSPM retains the desirable properties of a single-stage MSPM: high computational efficiency and a high accuracy compared with the multistage FMM scheme. [source]


    Migration velocity analysis for tilted transversely isotropic media

    GEOPHYSICAL PROSPECTING, Issue 1 2009
    Laxmidhar Behera
    ABSTRACT Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold-and-thrust belts) and in subsalt exploration. Here, we introduce a methodology for P-wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters , and , and linearly varying symmetry-direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P-wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters , and , in the layer-stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry-axis direction is fixed and VP0 is known, the parameters kz, kx, , and , can be resolved from reflection data. It should be emphasized that estimation of , in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas. [source]


    Improving Kirchhoff migration with repeated local plane-wave imaging?

    GEOPHYSICAL PROSPECTING, Issue 6 2005
    A SAR-inspired signal-processing approach in prestack depth imaging
    ABSTRACT A local plane-wave approach of generalized diffraction tomography in heterogeneous backgrounds, equivalent to Kirchhoff summation techniques when applied in seismic reflection, is re-programmed to act as repeated synthetic aperture radar (SAR) imaging for seismic prestack depth migration. Spotlight-mode SAR imaging quickly provides good images of the electromagnetic reflectivity of the ground via fast Fourier transform (FFT)-based signal processing. By calculating only the Green's functions connecting the aircraft to the centre of the illuminated patch, scattering structures around that centre are also recovered. SAR technology requires us to examine seismic imaging from the local point of view, where the quantity and quality of the available information at each image point are what are important, regardless of the survey geometry. When adapted to seismics, a local image of arbitrary size and sampling is obtained by FFT of seismic energy maps in the scattering wavenumber domain around each node of a pre-calculated grid of Green's functions. These local images can be used to generate a classic prestack depth-migrated section by collecting only their centres. However, the local images also provide valuable information around the centre, as in SAR. They can therefore help to pre-analyse prestack depth migration efficiently, and to perform velocity analysis at a very low cost. The FFT-based signal-processing approach allows local, efficient and automatic control of anti-aliasing, noise and resolution, including optimized Jacobian weights. Repeated local imaging could also be used to speed up migration, with interpolation between local images associated with a coarse grid of Green's functions, as an alternative to interpolation of Green's functions. The local images may, however, show distortions due to the local plane-wave approximation, and the velocity variations across their frame. Such effects, which are not necessarily a problem in SAR, should be controlled and corrected to further enhance seismic imaging. Applications to realistic models and to real data show that, despite the distortion effects, the local images can yield similar information to prestack depth migration, including common-image-point gathers for velocity analyses and AVO/AVA effects, at a much lower cost when a small target is considered. [source]


    Numerical calculations of erosion in an abrupt pipe contraction of different contraction ratios

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2004
    M. A. Habib
    Abstract Erosion predictions in a pipe with abrupt contraction of different contraction ratios for the special case of two-phase (liquid and solid) turbulent flow with low particle concentration are presented. A mathematical model based on the time-averaged governing equations of 2-D axi-symmetric turbulent flow is used for the calculations of the fluid velocity field (continuous phase). The particle-tracking model of the solid particles is based on the solution of the governing equation of each particle motion taking into consideration the effect of particle rebound behaviour. Models of erosion were used to predict the erosion rate in mg/g. The effect of Reynolds number and flow direction with respect to the gravity was investigated for three contraction geometries considering water flow in a carbon steel pipe. The results show that the influence of the contraction ratio on local erosion is very significant. However, this influence becomes insignificant when the average erosion rates over the sudden contraction area are considered. The results also indicate the significant influence of inlet velocity variations. The influence of buoyancy is significant for the cases of low velocity of the continuous flow. A threshold velocity below which erosion may be neglected was indicated. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    High-dispersion spectroscopy of two A supergiant systems in the Small Magellanic Cloud with novel properties

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2010
    R. E. Mennickent
    ABSTRACT We present the results of a spectroscopic investigation of two novel variable bright blue stars in the SMC, OGLE004336.91-732637.7 (SMC-SC3) and the periodically occulted star OGLE004633.76-731204.3 (SMC-SC4), whose photometric properties were reported by Mennickent et al. (2010). High-resolution spectra in the optical and far-UV show that both objects are actually A + B type binaries. Three spectra of SMC-SC4 show radial velocity variations, consistent with the photometric period of 184.26 d found in Mennickent et al. 2010. The optical spectra of the metallic lines in both systems show combined absorption and emission components that imply that they are formed in a flattened envelope. A comparison of the radial velocity variations in SMC-SC4 and the separation of the V and R emission components in the H, emission profile indicate that this envelope, and probably also the envelope around SMC-SC3, is a circumbinary disc with a characteristic orbital radius some three times the radius of the binary system. The optical spectra of SMC-SC3 and SMC-SC4 show, respectively, He i emission lines and discrete blue absorption components (BACs) in metallic lines. The high excitations of the He i lines in the SMC-SC3 spectrum and the complicated variations of Fe ii emission and absorption components with orbital phase in the spectrum of SMC-SC4 suggests that shocks occur between the winds and various static regions of the stars' corotating binary-disc complexes. We suggest that BACs arise from wind shocks from the A star impacting the circumbinary disc and a stream of former wind-efflux from the B star accreting on to the A star. The latter picture is broadly similar to mass transfer occurring in the more evolved (but less massive) algol (B/A + K) systems, except that we envision transfer occurring in the other direction and not through the inner Lagrangian point. Accordingly, we dub these objects prototype of a small group of Magellanic Cloud wind-interacting A + B binaries. [source]


    Post-common-envelope binaries from SDSS , I. 101 white dwarf main-sequence binaries with multiple Sloan Digital Sky Survey spectroscopy

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    A. Rebassa-Mansergas
    ABSTRACT We present a detailed analysis of 101 white dwarf main-sequence binaries (WDMS) from the Sloan Digital Sky Survey (SDSS) for which multiple SDSS spectra are available. We detect significant radial velocity variations in 18 WDMS, identifying them as post-common-envelope binaries (PCEBs) or strong PCEB candidates. Strict upper limits to the orbital periods are calculated, ranging from 0.43 to 7880 d. Given the sparse temporal sampling and relatively low spectral resolution of the SDSS spectra, our results imply a PCEB fraction of ,15 per cent among the WDMS in the SDSS data base. Using a spectral decomposition/fitting technique we determined the white dwarf effective temperatures and surface gravities, masses and secondary star spectral types for all WDMS in our sample. Two independent distance estimates are obtained from the flux-scaling factors between the WDMS spectra, and the white dwarf models and main-sequence star templates, respectively. Approximately one-third of the systems in our sample show a significant discrepancy between the two distance estimates. In the majority of discrepant cases, the distance estimate based on the secondary star is too large. A possible explanation for this behaviour is that the secondary star spectral types that we determined from the SDSS spectra are systematically too early by one to two spectral classes. This behaviour could be explained by stellar activity, if covering a significant fraction of the star by cool dark spots will raise the temperature of the interspot regions. Finally, we discuss the selection effects of the WDMS sample provided by the SDSS project. [source]


    On the orbital period modulation of RS CVn binary systems

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2005
    Antonino F. Lanza
    ABSTRACT The Applegate hypothesis proposed to explain the orbital period modulation of RS Canum Venaticorum (RS CVn) close binaries (Applegate 1992) is considered in the framework of a general model to treat the angular momentum exchanges within the convective envelope of a magnetically active star. This model assumes that the convection zone is strictly adiabatic and that the Taylor,Proudman balance holds, leading to an internal angular velocity constant over cylindrical surfaces co-axial with the rotation axis. It turns out that the angular velocity perturbations, whatever their origin, can be expressed in terms of the eigenfunctions of the equation of angular momentum conservation with stress-free boundary conditions. Moreover, a lower limit for the energy dissipation rate in a turbulent convection zone can be set, thanks to the extremal properties of the eigenfunctions. This approach allows to apply precise constraints on the amplitude and the radial profile of the angular velocity variations that are required to explain the observed orbital period changes in classical RS CVn binaries (i.e. with orbital period longer than 1,2 d and a subgiant secondary component). It is found that an angular velocity change as large as 10 per cent of the unperturbed angular velocity at the base of the stellar convection zone is needed. Such a large change is not compatible with the observations. Moreover, it would produce an energy dissipation rate much larger than the typical luminosities of the active components of RS CVn systems, except in the case that fast rotation and internal magnetic fields reduce the turbulent viscosity by at least 2 orders of magnitude with respect to the value given by the mixing-length theory. Therefore, the model proposed by Applegate should be rejected, at least in the case of classical RS CVn close binaries. Possible alternative models are briefly discussed, emphasizing the effects of intense magnetic fields (, 10 T) on the internal structure of magnetically active stars and the dynamics of close binary systems. [source]


    Discovery of rapid radial velocity variations in the roAp star 10 Aql and possible pulsations of , CrB

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2002
    O Kochukhov
    ABSTRACT We report discovery of radial velocity variations in rare earth spectral lines of the roAp star 10 Aql with amplitudes of between 30 and 130 m s,1 and periods of about 11 min. Radial velocity variations with amplitude 70 m s,1 may also have been detected in one spectral line of Fe i in , CrB. If confirmed, our results may indicate that all Ap stars in a certain temperature range pulsate, which means that roAp stars do not exist as a separate class but are only distinguished by higher pulsational amplitudes. [source]


    Radial velocity variations of the pulsating subdwarf B star PG 1605+072

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2002
    Vincent M. Woolf
    We present an analysis of high-speed spectroscopy of the pulsating subdwarf B star PG 1605+072. Periodic radial motions are detected at frequencies similar to those reported for photometric variations in the star, with amplitudes of up to 6 km s,1. Differences between relative strengths for given frequency peaks for our velocity data and previously measured photometry are probably a result of shifting of power between modes over time. Small differences in the detected frequencies may also indicate mode-shifting. We report the detection of line-shape variations using the moments of the cross-correlation function profiles. It may be possible to use the moments to identify the pulsation modes of the star. [source]


    Inverse problem in seismic imaging

    PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2007
    Maria Cameron
    We address the problem of estimating sound speeds (seismic velocities) inside the earth which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the seismic velocities and the time migration velocities using the paraxial ray tracing theory. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems and we test them on a collection of both synthetic examples and field data. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    HD 1: The number-one star in the sky,

    ASTRONOMISCHE NACHRICHTEN, Issue 4 2010
    K.G. Strassmeier
    Abstract We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber-fed high-resolution optical echelle spectrograph SES in the years 2007,2010. We found long-term radial velocity variations with a full amplitude of 9 km s,1 with an average velocity of ,29.8 km s,1 and suggest the star to be a hitherto unknown single-lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s,1. HD 1 appears to be a G9-K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L , 155 L,, a mass of 3.0±0.3 M,, a radius of 17.7 R,, and an age of ,350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = ,0.12 ± 0.09. The , -element silicon may indicate an overabundance of +0.13 though. The low strengths of some s-process lines and a lower limit for the 12C/13C isotope ratio of ,16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s,1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small-amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Geological constraints of pore pressure detection in shales from seismic data

    BASIN RESEARCH, Issue 1 2007
    Gunn M. G. Teige
    ABSTRACT Methods for detection of pore fluid overpressures in shales from seismic data have become widespread in the oil industry. Such methods are largely based on the identification of anomalous seismic velocities, and on subsequent determination of pore pressures through relationships between seismic velocities and the vertical effective stress (VES). Although it is well known that lithology variations and compaction mechanisms should be accounted for in pore pressure evaluation, a systematic approach to evaluation of these factors in seismic pore pressure prediction seems to be absent. We have investigated the influence of lithology variations and compaction mechanism on shale velocities from acoustic logs. This was performed by analyses of 80 wells from the northern North Sea and 24 wells from the Haltenbanken area. The analyses involved identification of large-scale density and velocity variations that were unrelated to overpressure variations, which served as a basis for the analyses of the resolution of overpressure variations from well log data. The analyses demonstrated that the overpressures in neither area were associated with compaction disequilibrium. A significant correlation between acoustic velocity and fluid overpressure nevertheless exists in the Haltenbanken data, whereas the correlation between these two parameters is weak to non-existing in the North Sea shales. We do not presently know why acoustic velocities in the two areas respond differently to fluid overpressuring. Smectitic rocks often have low permeabilities, and define the top of overpressures in the northern North Sea when they are buried below 2 km. As smectitic rocks are characterized by low densities and low acoustic velocities, their presence may be identified from seismic data. Smectite identification from seismic data may thus serve as an indirect overpressure indicator in some areas. Our investigations demonstrate the importance of including geological work and process understanding in pore pressure evaluation work. As a response to the lack of documented practice within this area, we suggest a workflow for geological analyses that should be performed and integrated with seismic pore pressure prediction. [source]