Velocity Field (velocity + field)

Distribution by Scientific Domains


Selected Abstracts


Planar Droplet Sizing for the Characterization of Droplet Clusters in an Industrial Gun-Type Burner

PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 3 2003
Laurent Zimmer
Abstract An important problem in spray combustion deals with the existence of dense regions of droplets, called clusters. To understand their formation mechanism, the droplet dynamics and fuel concentration profile are investigated by means of planar laser techniques in an industrial gun-type burner. The simultaneous measurement of elastic Mie scattering and Laser Induced Fluorescence (LIF) allows the instantaneous measurement of the Sauter Mean Diameter (SMD), after proper calibration. Using two different CCDs to get the two signals requires a detailed calibration of the CCD response before getting absolute diameters. Pixels are binned 6 by 6 to obtain the final SMD map, this is a compromise between spatial accuracy and noise. Velocity field is measured on both sets of images using standard Particle Image Velocimetry (PIV) algorithms. The comparison of cross-correlation technique with PDA results shows that the velocity measured on the LIF images are close to the velocity based on D30, whereas the Mie scattering results are similar to D20. On Mie scattering images, regions of high interfacial area forming clusters can be detected. A special tracking scheme is used to characterize their dynamics in terms of velocity and diameters by ensuring that the same volume of fluid is tracked. It is shown that the clusters have a velocity similar to the velocity of droplets with the same diameter as the mean SMD of the cluster. It is also shown that an increase of pressure tends to trigger the appearance of such a group of droplets, due to a smaller diameter of the droplets caused by the increase of pressure discharge. Uncertainties for the different techniques used are discussed. [source]


Using computer vision to simulate the motion of virtual agents

COMPUTER ANIMATION AND VIRTUAL WORLDS (PREV: JNL OF VISUALISATION & COMPUTER ANIMATION), Issue 2 2007
Soraia R. Musse
Abstract In this paper, we propose a new model to simulate the movement of virtual humans based on trajectories captured automatically from filmed video sequences. These trajectories are grouped into similar classes using an unsupervised clustering algorithm, and an extrapolated velocity field is generated for each class. A physically-based simulator is then used to animate virtual humans, aiming to reproduce the trajectories fed to the algorithm and at the same time avoiding collisions with other agents. The proposed approach provides an automatic way to reproduce the motion of real people in a virtual environment, allowing the user to change the number of simulated agents while keeping the same goals observed in the filmed video. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Scalable real-time animation of rivers

COMPUTER GRAPHICS FORUM, Issue 2 2009
Qizhi Yu
Many recent games and applications target the interactive exploration of realistic large scale worlds. These worlds consist mostly of static terrain models, as the simulation of animated fluids in these virtual worlds is computationally expensive. Adding flowing fluids, such as rivers, to these virtual worlds would greatly enhance their realism, but causes specific issues: as the user is usually observing the world at close range, small scale details such as waves and ripples are important. However, the large scale of the world makes classical methods impractical for simulating these effects. In this paper, we present an algorithm for the interactive simulation of realistic flowing fluids in large virtual worlds. Our method relies on two key contributions: the local computation of the velocity field of a steady flow given boundary conditions, and the advection of small scale details on a fluid, following the velocity field, and uniformly sampled in screen space. [source]


Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects

ELECTROPHORESIS, Issue 18 2009
Deguang Yan
Abstract This study reports improved electrokinetically driven microfluidic T-mixers to enhance their mixing efficiency. Enhancement of electrokinetic microfluidic T-mixers is achieved using (i) an active approach of utilizing a pulsating EOF, and (ii) a passive approach of using the channel geometry effect with patterned blocks. PDMS-based electrokinetic T-mixers of different designs were fabricated. Experimental measurements were carried out using Rhodamine B to examine the mixing performance and the micro-particle image velocimetry technique to characterize the electrokinetic flow velocity field. Scaling analysis provides an effective frequency range of applied AC electric field. Results show that for a T-mixer of 10,mm mixing length, utilizing frequency modulated electric field and channel geometry effects can increase the mixing efficiency from 50 to 90%. In addition, numerical simulations were performed to analyze the mixing process in the electrokinetic T-mixers with various designs. The simulation results were compared with the experimental data, and reasonable agreement was found. [source]


Numerical modeling of the Joule heating effect on electrokinetic flow focusing

ELECTROPHORESIS, Issue 10 2006
Kuan-Da Huang
Abstract In electrokinetically driven microfluidic systems, the driving voltage applied during operation tends to induce a Joule heating effect in the buffer solution. This heat source alters the solution's characteristics and changes both the electrical potential field and the velocity field during the transport process. This study performs a series of numerical simulations to investigate the Joule heating effect and analyzes its influence on the electrokinetic focusing performance. The results indicate that the Joule heating effect causes the diffusion coefficient of the sample to increase, the potential distribution to change, and the flow velocity field to adopt a nonuniform profile. These variations are particularly pronounced under tighter focusing conditions and at higher applied electrical intensities. In numerical investigations, it is found that the focused bandwidth broadens because thermal diffusion effect is enhanced by Joule heating. The variation in the potential distribution induces a nonuniform flow field and causes the focused bandwidth to tighten and broaden alternately as a result of the convex and concave velocity flow profiles, respectively. The present results confirm that the Joule heating effect exerts a considerable influence on the electrokinetic focusing ratio. [source]


Influence of anisotropy on a limit load of weld strength overmatched middle cracked tension specimens

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2003
S. ALEXANDROV
ABSTRACT A plane-strain upper bound limit load solution for weld strength overmatched middle cracked tension specimens (M(T) specimens), is found. It is assumed that the weld material is isotropic, but the base material is orthotropic and its axes of orthotropy are straight and parallel to the axes of symmetry of the specimen. A quadratic orthotropic yield criterion is adopted. The solution is based on a simple discontinuous kinematically admissible velocity field and is an extension of the corresponding solution for the specimen made of isotropic materials. These two solutions are compared to demonstrate the influence of anisotropy on the magnitude of the limit load. [source]


Natural-gradient tracer experiments in epikarst: a test study in the Acqua dei Faggi experimental site, southern Italy

GEOFLUIDS (ELECTRONIC), Issue 3 2008
E. PETRELLA
Abstract Two natural-gradient tracer experiments were carried out using borehole fluorometers in order to characterize the internal structure of epikarstic horizons and analyze subsurface flow within these high-conductivity layers. The experiments were carried out in a test site in southern Italy where the epikarst is made up of an upper part with pervasive karstification and a lower part without pervasive karstification. Injection and observation boreholes were 6.9 m apart. An initial experiment demonstrated that wider (conduits) and narrower (fractures and bedding planes) openings coexist in a well-connected network within the lower epikarst. The adjusted aperture of the opening network (105 ,m) suggests that conduits are subordinately developed. The lower epikarstic horizon is hydraulically similar to granular porous media and Darcy's law can be applied to describe groundwater flow. A small value of longitudinal dispersivity (0.13 m) shows that variations in the velocity field in the direction of flow are less significant than those typical of carbonate systems at the same experiment scale. A second experiment demonstrated that longitudinal dispersivity (2.42 m) in the upper epikarst is in agreement with findings in other carbonates at the same experiment scale. However, despite the higher dispersivity and more pervasive karstification, the mean tracer velocity (3.7 m day,1) in the upper epikarst is slightly lower than the velocity in the lower epikarst (13.6 m day,1). [source]


A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2010
Sylvain Barbot
SUMMARY We present a unified continuum mechanics representation of the mechanisms believed to be commonly involved in post-seismic transients such as viscoelasticity, fault creep and poroelasticity. The time-dependent relaxation that follows an earthquake, or any other static stress perturbation, is considered in a framework of a generalized viscoelastoplastic rheology whereby some inelastic strain relaxes a physical quantity in the material. The relaxed quantity is the deviatoric stress in case of viscoelastic relaxation, the shear stress in case of creep on a fault plane and the trace of the stress tensor in case of poroelastic rebound. In this framework, the instantaneous velocity field satisfies the linear inhomogeneous Navier's equation with sources parametrized as equivalent body forces and surface tractions. We evaluate the velocity field using the Fourier-domain Green's function for an elastic half-space with surface buoyancy boundary condition. The accuracy of the proposed method is demonstrated by comparisons with finite-element simulations of viscoelastic relaxation following strike-slip and dip-slip ruptures for linear and power-law rheologies. We also present comparisons with analytic solutions for afterslip driven by coseismic stress changes. Finally, we demonstrate that the proposed method can be used to model time-dependent poroelastic rebound by adopting a viscoelastic rheology with bulk viscosity and work hardening. The proposed method allows one to model post-seismic transients that involve multiple mechanisms (afterslip, poroelastic rebound, ductile flow) with an account for the effects of gravity, non-linear rheologies and arbitrary spatial variations in inelastic properties of rocks (e.g. the effective viscosity, rate-and-state frictional parameters and poroelastic properties). [source]


Saturation and time dependence of geodynamo models

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2010
M. Schrinner
SUMMARY In this study we address the question under which conditions a saturated velocity field stemming from geodynamo simulations leads to an exponential growth of the magnetic field in a corresponding kinematic calculation. We perform global self-consistent geodynamo simulations and calculate the evolution of a kinematically advanced tracer field. The self-consistent velocity field enters the induction equation in each time step, but the tracer field does not contribute to the Lorentz force. This experiment has been performed by Cattaneo and Tobias and is closely related to the test field method by Schrinner et al. We find two dynamo regimes in which the tracer field either grows exponentially or approaches a state aligned with the actual self-consistent magnetic field after an initial transition period. Both regimes can be distinguished by the Rossby number and coincide with the dipolar and multipolar dynamo regimes identified by Christensen and Aubert. Dipolar dynamos with low Rossby number are kinematically stable whereas the tracer field grows exponentially in the multipolar dynamo regime. This difference in the saturation process for dynamos in both regimes comes along with differences in their time variability. Within our sample of 20 models, solely kinematically unstable dynamos show dipole reversals and large excursions. The complicated time behaviour of these dynamos presumably relates to the alternating growth of several competing dynamo modes. On the other hand, dynamos in the low Rossby number regime exhibit a rather simple time dependence and their saturation merely results in a fluctuation of the fundamental dynamo mode about its critical state. [source]


Multiscale estimation of GPS velocity fields

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2009
Carl Tape
SUMMARY We present a spherical wavelet-based multiscale approach for estimating a spatial velocity field on the sphere from a set of irregularly spaced geodetic displacement observations. Because the adopted spherical wavelets are analytically differentiable, spatial gradient tensor quantities such as dilatation rate, strain rate and rotation rate can be directly computed using the same coefficients. In a series of synthetic and real examples, we illustrate the benefit of the multiscale approach, in particular, the inherent ability of the method to localize a given deformation field in space and scale as well as to detect outliers in the set of observations. This approach has the added benefit of being able to locally match the smallest resolved process to the local spatial density of observations, thereby both maximizing the amount of derived information while also allowing the comparison of derived quantities at the same scale but in different regions. We also consider the vertical component of the velocity field in our synthetic and real examples, showing that in some cases the spatial gradients of the vertical velocity field may constitute a significant part of the deformation. This formulation may be easily applied either regionally or globally and is ideally suited as the spatial parametrization used in any automatic time-dependent geodetic transient detector. [source]


Near-surface models in Saudi Arabia

GEOPHYSICAL PROSPECTING, Issue 6 2007
Ralph Bridle
ABSTRACT A single-layer model of the near surface throughout the Kingdom of Saudi Arabia is available. While this simple model suffices for most areas and large subsurface structures, it fails in situations where the surface topography is complex, the base of weathering is below the datum, or where the time structural closure is less than the uncertainty in the static correction. In such cases, multiple-layered models that incorporate velocities derived from analysis of first arrivals picked from seismic shot records have proved to be successful in defining the lateral heterogeneity of the near surface. The additional velocity information obtained from this first-arrival analysis (direct as well as refracted arrivals) vastly improves the velocity,depth model of the near surface, regardless of the topography. Static corrections computed from these detailed near-surface velocity models have significantly enhanced subsurface image focusing, thereby reducing the uncertainty in the closure of target structures. Other non-seismic methods have been used either to confirm qualitatively or to enhance the layer models previously mentioned. Gravity data may be particularly useful in sandy areas to confirm general structure, while geostatistical modelling of vibrator base-plate attributes has yielded information that enhances the velocity field. In the global context, exploration targets of the oil and gas industry are seeking smaller and lower relief-time structures. Thus, near-surface models will need to enhance and integrate these methods, particularly in areas where the assumption of flat-lying near-surface layers cannot be met. [source]


Accounting for velocity anisotropy in seismic traveltime tomography: a case study from the investigation of the foundations of a Byzantine monumental building

GEOPHYSICAL PROSPECTING, Issue 1 2006
L. Polymenakos
ABSTRACT We estimate velocity anisotropy factors from seismic traveltime tomographic data and apply a correction for anisotropy in the inversion procedure to test possible improvements on the traveltime fit and the quality of the resulting tomographic images. We applied the anisotropy correction on a traveltime data set obtained from the investigation of the foundation structure of a monumental building: a Byzantine church from the 11th century AD, in Athens, Greece. Vertical transverse isotropy is represented by one axis of symmetry and one anisotropy magnitude for the entire tomographic inversion grid. We choose the vertical direction for the symmetry axis by analysing the available data set and taking into account information on the character of the foundations of the church from the literature and past excavations. The anisotropy magnitude is determined by testing a series of values of anisotropy and examining their effect on the tomographic inversion results. The best traveltime fit and image quality are obtained with an anisotropy value (Vmax/Vmin) of 1.6, restricted to the high velocity structures in the subsurface. We believe that this anisotropy value, which is significantly higher than the usual values reported for near-surface geological material, is related to the fabric of the church foundations, due to the shape of the individual stone blocks and the layout of the stonework. Inversion results obtained with the correction for anisotropy indicate that both the traveltime fit and the image quality are improved, providing an enhanced reconstruction of the velocity field, especially for the high-velocity features. Based on this enhanced and more reliable reconstruction of velocity distribution, an improved image of the subsurface material character was made possible. In particular, the pattern and state of the church foundations and possible weak ground material areas were revealed more clearly. This improved subsurface knowledge may assist in a better design of restoration measures for monumental buildings such as Byzantine churches. [source]


Influence of Transient Flow on Contaminant Biodegradation

GROUND WATER, Issue 2 2001
Mario Schirmer
The rate of biodegradation in contaminated aquifers depends to a large extent on dispersive mixing processes that are now generally accepted to result from spatial variations in the velocity field. It has been shown, however, that transient flow fields can also contribute to dispersive mixing. The influence of transient flow on biodegrading contaminants is particularly important since it can enhance mixing with electron acceptors, further promoting the reactive process. Using numerical simulations, the effect of transient flow on the behavior of a biodegradable contaminant is evaluated here both with respect to the development of apparently large horizontal transverse dispersion and also with respect to enhanced mixing between the substrate (electron donor) and electron acceptor. The numerical model BIO3D, which solves for advective-dispersive transport coupled with Monod-type biodegradation of substrates in the presence of an electron acceptor, was used for the simulations. The model was applied in a two-dimensional plan view mode considering a single substrate. Transient flow fields were found to yield larger apparent transverse dispersion because the longitudinal dispersivity also acts transverse to the mean flow direction. In the reactive case, the transient flow field increases substrate-oxygen mixing, which in turn enhances the overall rate of biodegradation. The results suggest that in the case of moderate changes of flow directions, a steady-state flow field can be justified, thereby avoiding the higher computational costs of a fully transient simulation. The use of a higher transverse horizontal dispersivity in a steady flow field can, under these conditions, adequately forecast plume development. [source]


Assessment of acceleration modelling for fluid-filled porous media subjected to dynamic loading

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2008
B. Lenhof
Abstract The purpose of this paper is to examine the importance of different possible simplifying approximations when performing numerical simulations of fluid-filled porous media subjected to dynamic loading. In particular, the relative importance of the various acceleration terms for both the solid and the fluid, especially the convective contribution, is assessed. The porous medium is modelled as a binary mixture of a solid phase, in the sense of a porous skeleton, and a fluid phase that represents both liquid and air in the pores. The solid particles are assumed to be intrinsically incompressible, whereas the fluid is assigned a finite intrinsic compressibility. Finite element (FE) simulations are carried out while assuming material properties and loading conditions representative for a road structure. The results show that, for the range of the material data used in the simulations, omitting the relative acceleration gives differences in the solution of the seepage velocity field, whereas omitting only the convective term does not lead to significant differences. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Minimum principle and related numerical scheme for simulating initial flow and subsequent propagation of liquefied ground

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2005
Sami Montassar
Abstract The problem of predicting the evolution of liquefied ground, modelled as a viscoplastic material, is addressed by combining a minimum principle for the velocity field, which characterizes such an evolution, and a time step integration procedure. Two different numerical schemes are then presented for the finite element implementation of this minimum principle, namely, the regularization technique and the decomposition-co-ordination method by augmented Lagrangian. The second method, which proves more accurate and efficient than the first, is finally applied to simulate the incipient flow failure and subsequent spreading of a liquefied soil embankment subject to gravity. The strong influence of liquefied soil residual shear strength on reducing the maximum amplitude of the ground displacement is particularly emphasized in such an analysis. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Kinematic models for non-coaxial granular materials.

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2005
Part I: theory
Abstract The purpose of this paper is to present a physically based plasticity model for non-coaxial granular materials. The model, which we shall call the double slip and rotation rate model (DSR2 model), is a pair of kinematic equations governing the velocity field. The model is based on a discrete micro-analysis of the kinematics of particles in contact, and is formulated by introducing a quantity called the averaged micro-pure rotation rate (APR) into the unified plasticity model which was proposed by one of the authors. Our macro,micro mechanical analysis shows that the APR is a non-linear function of, among other quantities, the macro-rotation rate of the major principal axis of stress taken in the opposite sense. The requirement of energy dissipation used in the double-sliding free-rotating model appears to be unduly restrictive as a constitutive assumption in continuum models. In the DSR2 model the APR tensor and the spin tensor are directly linked with non-coaxiality of the stress and deformation rate tensors. We also propose a simplified plasticity model based on the DSR2 model for a class of dilatant materials, and analyse its material stability. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Performance of parallel preconditioners for adaptive hp FEM discretization of incompressible flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 5 2002
Andrew C. Bauer
Abstract Adaptive hp finite element (FEM) approximations of incompressible flow make special demands on parallel solution algorithms. We report here on the performance of standard algebraic preconditioning techniques for the efficient solution of such problems. We employ a Schur complement scheme to eliminate the ,bubble' degrees of freedom associated with the velocity field, thus removing the zeros from the diagonals and enabling the use of standard algebraic techniques. Using new data management strategies and the PETSc library of iterative solvers for linear systems, numerical results for Jacobi, Block Jacobi and Additive Schwartz preconditioners are presented. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Energy,momentum consistent finite element discretization of dynamic finite viscoelasticity

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2010
M. Groß
Abstract This paper is concerned with energy,momentum consistent time discretizations of dynamic finite viscoelasticity. Energy consistency means that the total energy is conserved or dissipated by the fully discretized system in agreement with the laws of thermodynamics. The discretization is energy,momentum consistent if also momentum maps are conserved when group motions are superimposed to deformations. The performed approximation is based on a three-field formulation, in which the deformation field, the velocity field and a strain-like viscous internal variable field are treated as independent quantities. The new non-linear viscous evolution equation satisfies a non-negative viscous dissipation not only in the continuous case, but also in the fully discretized system. The initial boundary value problem is discretized by using finite elements in space and time. Thereby, the temporal approximation is performed prior to the spatial approximation in order to preserve the stress objectivity for finite rotation increments (incremental objectivity). Although the present approach makes possible to design schemes of arbitrary order, the focus is on finite elements relying on linear Lagrange polynomials for the sake of clearness. The discrete energy,momentum consistency is based on the collocation property and an enhanced second Piola,Kirchhoff stress tensor. The obtained coupled non-linear algebraic equations are consistently linearized. The corresponding iterative solution procedure is associated with newly proposed convergence criteria, which take the discrete energy consistency into account. The iterative solution procedure is therefore not complicated by different scalings in the independent variables, since the motion of the element is taken into account for solving the viscous evolution equation. Representative numerical simulations with various boundary conditions show the superior stability of the new time-integration algorithm in comparison with the ordinary midpoint rule. Both the quasi-rigid deformations during a free flight, and large deformations arising in a dynamic tensile test are considered. Copyright © 2009 John Wiley & Sons, Ltd. [source]


ODDLS: A new unstructured mesh finite element method for the analysis of free surface flow problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2008
Julio Garcia-Espinosa
Abstract This paper introduces a new stabilized finite element method based on the finite calculus (Comput. Methods Appl. Mech. Eng. 1998; 151:233,267) and arbitrary Lagrangian,Eulerian techniques (Comput. Methods Appl. Mech. Eng. 1998; 155:235,249) for the solution to free surface problems. The main innovation of this method is the application of an overlapping domain decomposition concept in the statement of the problem. The aim is to increase the accuracy in the capture of the free surface as well as in the resolution of the governing equations in the interface between the two fluids. Free surface capturing is based on the solution to a level set equation. The Navier,Stokes equations are solved using an iterative monolithic predictor,corrector algorithm (Encyclopedia of Computational Mechanics. Wiley: New York, 2004), where the correction step is based on imposing the divergence-free condition in the velocity field by means of the solution to a scalar equation for the pressure. Examples of application of the ODDLS formulation (for overlapping domain decomposition level set) to the analysis of different free surface flow problems are presented. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A new hybrid velocity integration method applied to elastic wave propagation

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2008
Zhiyun Chen
Abstract We present a novel space,time Galerkin method for solutions of second-order time-dependent problems. By introducing the displacement,velocity relationship implicitly, the governing set of equations is reformulated into a first-order single field problem with the unknowns in the velocity field. The resulting equation is in turn solved by a time-discontinuous Galerkin approach (Int. J. Numer. Anal. Meth. Geomech. 2006; 30:1113,1134), in which the continuity between time intervals is weakly enforced by a special upwind flux treatment. After solving the equation for the unknown velocities, the displacement field quantities are computed a posteriori in a post-processing step. Various numerical examples demonstrate the efficiency and reliability of the proposed method. Convergence studies with respect to the h - and p -refinement and different discretization techniques are given. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Adaptive finite elements with large aspect ratio for mass transport in electroosmosis and pressure-driven microflows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2010
Virabouth Prachittham
Abstract A space,time adaptive method is presented for the numerical simulation of mass transport in electroosmotic and pressure-driven microflows in two space dimensions. The method uses finite elements with large aspect ratio, which allows the electroosmotic flow and the mass transport to be solved accurately despite the presence of strong boundary layers. The unknowns are the external electric potential, the electrical double layer potential, the velocity field and the sample concentration. Continuous piecewise linear stabilized finite elements with large aspect ratio and the Crank,Nicolson scheme are used for the space and time discretization of the concentration equation. Numerical results are presented showing the efficiency of this approach, first in a straight channel, then in crossing and multiple T-form configuration channels. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Fluid,solid interaction problems with thermal convection using the immersed element-free Galerkin method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2010
Claudio M. Pita
Abstract In this work, the immersed element-free Galerkin method (IEFGM) is proposed for the solution of fluid,structure interaction (FSI) problems. In this technique, the FSI is represented as a volumetric force in the momentum equations. In IEFGM, a Lagrangian solid domain moves on top of an Eulerian fluid domain that spans over the entire computational region. The fluid domain is modeled using the finite element method and the solid domain is modeled using the element-free Galerkin method. The continuity between the solid and fluid domains is satisfied by means of a local approximation, in the vicinity of the solid domain, of the velocity field and the FSI force. Such an approximation is achieved using the moving least-squares technique. The method was applied to simulate the motion of a deformable disk moving in a viscous fluid due to the action of the gravitational force and the thermal convection of the fluid. An analysis of the main factors affecting the shape and trajectory of the solid body is presented. The method shows a distinct advantage for simulating FSI problems with highly deformable solids. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Convergence study of a family of flux-continuous, finite-volume schemes for the general tensor pressure equation

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9-10 2006
Mayur Pal
Abstract In this paper, a numerical convergence study of family of flux-continuous schemes is presented. The family of flux-continuous schemes is characterized in terms of quadrature parameterization, where the local position of continuity defines the quadrature point and hence the family. A convergence study is carried out for the discretization in physical space and the effect of a range of quadrature points on convergence is explored. Structured cell-centred and unstructured cell-vertex schemes are considered. Homogeneous and heterogeneous cases are tested, and convergence is established for a number of examples with discontinuous permeability tensor including a velocity field with singularity. Such cases frequently arise in subsurface flow modelling. A convergence comparison with CVFE is also presented. Copyright © 2006 John Wiley & Sons, Ltd. [source]


A combined vortex and panel method for numerical simulations of viscous flows: a comparative study of a vortex particle method and a finite volume method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10 2005
Kwang-Soo Kim
Abstract This paper describes and compares two vorticity-based integral approaches for the solution of the incompressible Navier,Stokes equations. Either a Lagrangian vortex particle method or an Eulerian finite volume scheme is implemented to solve the vorticity transport equation with a vorticity boundary condition. The Biot,Savart integral is used to compute the velocity field from a vorticity distribution over a fluid domain. The vorticity boundary condition is improved by the use of an iteration scheme connected with the well-established panel method. In the early stages of development of flows around an impulsively started circular cylinder, and past an impulsively started foil with varying angles of attack, the computational results obtained by the Lagrangian vortex method are compared with those obtained by the Eulerian finite volume method. The comparison is performed separately for the pressure fields as well. The results obtained by the two methods are in good agreement, and give a better understanding of the vorticity-based methods. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Finite element modelling of free-surface flows with non-hydrostatic pressure and k,, turbulence model

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2005
C. Leupi
Abstract Validation of 3D finite element model for free-surface flow is conducted using a high quality and high spatial resolution data set. The commonly numerical models with the conventional hydrostatic pressure still remain the most widely used approach for the solution of practical engineering problems. However, when a 3D description of the velocity field is required, it is useful to resort to a more accurate model in which the hydrostatic assumption is removed. The present research finds its motivation in the increasing need for efficient management of geophysical flows such as estuaries (multiphase fluid flow) or natural rivers with the presence of short waves and/or strong bathymetry gradient, and/or strong channel curvature. A numerical solution is based on the unsteady Reynolds-averaged Navier,Stokes equations on the unstructured grid. The eddy viscosity is calculated from the efficient k,, turbulence model. The model uses implicit fractional step time stepping, and the characteristics method is used to compute the convection terms in the multi-layers system (suitable for the vertical stratified fluid flow), in which the vertical grid is located at predefined heights and the number of elements in the water column depends on water depth. The bottommost and topmost elements of variable height allow a faithful representation of the bed and the time-varying free-surface, respectively. The model is applied to the 3D open channel flows of various complexity, for which experimental data are available for comparison. Computations with and without non-hydrostatic are compared for the same trench to test the validity of the conventional hydrostatic pressure assumption. Good agreement is found between numerical computations and experiments. Copyright © 2005 John Wiley & Sons, Ltd. [source]


A semi-implicit method conserving mass and potential vorticity for the shallow water equations on the sphere

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 8-9 2005
Luca Bonaventura
Abstract A semi-implicit discretization for the shallow water equations is discussed, which uses triangular Delaunay cells on the sphere as control volumes and conserves mass and potential vorticity. The geopotential gradient, the Coriolis force terms and the divergence of the velocity field are discretized implicitly, while an explicit time discretization is used for the non-linear advection terms. The results obtained with a preliminary implementation on some idealized test cases are presented, showing that the main features of large scale atmospheric flows are well represented by the proposed method. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2004
Dzmitry Hlushkou
Abstract In this article we are concerned with an extension of the lattice-Boltzmann method for the numerical simulation of three-dimensional electroosmotic flow problems in porous media. Our description is evaluated using simple geometries as those encountered in open-channel microfluidic devices. In particular, we consider electroosmosis in straight cylindrical capillaries with a (non)uniform zeta-potential distribution for ratios of the capillary inner radius to the thickness of the electrical double layer from 10 to 100. The general case of heterogeneous zeta-potential distributions at the surface of a capillary requires solution of the following coupled equations in three dimensions: Navier,Stokes equation for liquid flow, Poisson equation for electrical potential distribution, and the Nernst,Planck equation for distribution of ionic species. The hydrodynamic problem has been treated with high efficiency by code parallelization through the lattice-Boltzmann method. For validation velocity fields were simulated in several microcapillary systems and good agreement with results predicted either theoretically or obtained by alternative numerical methods could be established. Results are also discussed with respect to the use of a slip boundary condition for the velocity field at the surface. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Numerical calculations of erosion in an abrupt pipe contraction of different contraction ratios

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2004
M. A. Habib
Abstract Erosion predictions in a pipe with abrupt contraction of different contraction ratios for the special case of two-phase (liquid and solid) turbulent flow with low particle concentration are presented. A mathematical model based on the time-averaged governing equations of 2-D axi-symmetric turbulent flow is used for the calculations of the fluid velocity field (continuous phase). The particle-tracking model of the solid particles is based on the solution of the governing equation of each particle motion taking into consideration the effect of particle rebound behaviour. Models of erosion were used to predict the erosion rate in mg/g. The effect of Reynolds number and flow direction with respect to the gravity was investigated for three contraction geometries considering water flow in a carbon steel pipe. The results show that the influence of the contraction ratio on local erosion is very significant. However, this influence becomes insignificant when the average erosion rates over the sudden contraction area are considered. The results also indicate the significant influence of inlet velocity variations. The influence of buoyancy is significant for the cases of low velocity of the continuous flow. A threshold velocity below which erosion may be neglected was indicated. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Numerical simulation of three-dimensional free surface flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2003
V. Maronnier
Abstract A numerical model is presented for the simulation of complex fluid flows with free surfaces in three space dimensions. The model described in Maronnier et al. (J. Comput. Phys. 1999; 155(2) : 439) is extended to three dimensional situations. The mathematical formulation of the model is similar to that of the volume of fluid (VOF) method, but the numerical procedures are different. A splitting method is used for the time discretization. At each time step, two advection problems,one for the predicted velocity field and the other for the volume fraction of liquid,are to be solved. Then, a generalized Stokes problem is solved and the velocity field is corrected. Two different grids are used for the space discretization. The two advection problems are solved on a fixed, structured grid made out of small cubic cells, using a forward characteristic method. The generalized Stokes problem is solved using continuous, piecewise linear stabilized finite elements on a fixed, unstructured mesh of tetrahedrons. The three-dimensional implementation is discussed. Efficient postprocessing algorithms enhance the quality of the numerical solution. A hierarchical data structure reduces memory requirements. Numerical results are presented for complex geometries arising in mold filling. Copyright © 2003 John Wiley & Sons, Ltd. [source]


An efficient finite difference scheme for free-surface flows in narrow rivers and estuaries

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2003
XinJian ChenArticle first published online: 13 MAY 200
Abstract This paper presents a free-surface correction (FSC) method for solving laterally averaged, 2-D momentum and continuity equations. The FSC method is a predictor,corrector scheme, in which an intermediate free surface elevation is first calculated from the vertically integrated continuity equation after an intermediate, longitudinal velocity distribution is determined from the momentum equation. In the finite difference equation for the intermediate velocity, the vertical eddy viscosity term and the bottom- and sidewall friction terms are discretized implicitly, while the pressure gradient term, convection terms, and the horizontal eddy viscosity term are discretized explicitly. The intermediate free surface elevation is then adjusted by solving a FSC equation before the intermediate velocity field is corrected. The finite difference scheme is simple and can be easily implemented in existing laterally averaged 2-D models. It is unconditionally stable with respect to gravitational waves, shear stresses on the bottom and side walls, and the vertical eddy viscosity term. It has been tested and validated with analytical solutions and field data measured in a narrow, riverine estuary in southwest Florida. Model simulations show that this numerical scheme is very efficient and normally can be run with a Courant number larger than 10. It can be used for rivers where the upstream bed elevation is higher than the downstream water surface elevation without any problem. Copyright © 2003 John Wiley & Sons, Ltd. [source]