Various Tumor Cell Lines (various + tumor_cell_line)

Distribution by Scientific Domains


Selected Abstracts


Zoledronate has an antitumor effect and induces actin rearrangement in dexamethasone-resistant myeloma cells

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 5 2007
Masayuki Koizumi
Abstract New strategies are needed to overcome the resistance of multiple myeloma (MM) to dexamethasone (Dex). Several recent in vitro studies demonstrated the antitumor effect of nitrogen-containing amino-bisphosphonates (N-BPs) in various tumor cell lines. Inhibition of the prenylation of small G proteins is assumed to be one of the principal mechanisms by which N-BPs exert their effects. There have been few reports on N-BP treatment of MM cells that are resistant to Dex. Additionally, it is not known how small G proteins are altered in N-BP-treated MM cells. In this study, we evaluated the effect of the most potent N-BP, zoledronate (ZOL), on a Dex-resistant human MM cell subline (Dex-R) that we established from the well-documented RPMI8226 cell line. ZOL reduced the viability and induced apoptosis of Dex-R cells. Some of the ZOL-treated RPMI8226 cells and ZOL-treated Dex-R cells were elongated; however, elongated cells were not seen among the Dex-treated RPMI8226 cells. Furthermore, we found that portions of the small G proteins, Rho and Rap1A, were unprenylated in the ZOL-treated MM cells. Geranylgeraniol reduced the above-mentioned ZOL-induced effects. These findings suggest that ZOL may be beneficial for the treatment of Dex-resistant MM by suppressing the processing of RhoA and Rap1A. [source]


Synthesis and Biological Evaluation of Pretubulysin and Derivatives,

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 36 2009
Angelika Ullrich
Abstract Pretubulysin, a biosynthetic precursor of the tubulysins, shows potent biological activity in the subnanomolar range towards various tumor cell lines. Its activity is only slightly less than those of the structurally more complex tubulysins. With a straightforward synthesis to hand, pretubulysin is an ideal lead structure for the development of tubulysin-based anticancer drugs(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Curcumin downregulates H19 gene transcription in tumor cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008
Renata Novak Kujund
Abstract Curcumin (diferuloymethane), a natural compound used in traditional medicine, exerts an antiproliferative effect on various tumor cell lines by an incompletely understood mechanism. It has been shown that low doses of curcumin downregulate DNA topoisomerase II alpha (TOP2A) which is upregulated in many malignances. The activity of TOP2A is required for RNA polymerase II transcription on chromatin templates. Recently, it has been reported that CTCF, a multifunctional transcription factor, recruits the largest subunit of RNA polymerase II (LS Pol II) to its target sites genome-wide. This recruitment of LS Pol II is more pronounced in proliferating cells than in fully differentiated cells. As expression of imprinted genes is often altered in tumors, we investigated the potential effect of curcumin treatment on transcription of the imprinted H19 gene, located distally from the CTCF binding site, in human tumor cell lines HCT 116, SW 620, HeLa, Cal 27, Hep-2 and Detroit 562. Transcription of TOP2A and concomitantly H19 was supressed in all tumor cell lines tested. Monoallelic IGF2 expression was maintained in curcumin-treated cancer cells, indicating the involvement of mechanism/s other than disturbance of CTCF insulator function at the IGF2/H19 locus. Curcumin did not alter H19 gene transcription in primary cell cultures derived from normal human tissues. J. Cell. Biochem. 104: 1781,1792, 2008. © 2008 Wiley-Liss, Inc. [source]


Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2003
Shin'ichi Saito
Abstract The ECT2 protooncogene plays a critical role in cytokinesis, and its C-terminal half encodes a Dbl homology-pleckstrin homology module, which catalyzes guanine nucleotide exchange on the Rho family of small GTPases. The N-terminal half of ECT2 (ECT2-N) contains domains related to the cell cycle regulator/checkpoint control proteins including human XRCC1, budding yeast CLB6, and fission yeast Cut5. The Cut5-related domain consists of two BRCT repeats, which are widespread to repair/checkpoint control proteins. ECT2 is ubiquitously expressed in various tissues and cell lines, but elevated levels of ECT2 expression were found in various tumor cell lines and rapidly developing tissues in mouse embryos. Consistent with these findings, induction of ECT2 expression was observed upon stimulation by serum or various growth factors. In contrast to other oncogenes whose expression is induced early in G1, ECT2 expression was induced later, coinciding with the initiation of DNA synthesis. To test the role of the cell cycle regulator/checkpoint control protein-related domains of ECT2 in cytokinesis, we expressed various ECT2 derivatives in U2OS cells, and analyzed their DNA content by flow cytometry. Expression of the N-terminal half of ECT2, which lacks the catalytic domain, generated cells with more than 4N DNA content, suggesting that cytokinesis was inhibited in these cells. Interestingly, ECT2-N lacking the nuclear localization signals inhibited cytokinesis more strongly than the derivatives containing these signals. Mutational analyses revealed that the XRCC1, CLB6, and BRCT domains in ECT2-N are all essential for the cytokinesis inhibition by ECT2-N. These results suggest that the XRCC1, CLB6, and BRCT domains of ECT2 play a critical role in regulating cytokinesis. Published 2003 Wiley-Liss, Inc. [source]


K vitamins, PTP antagonism, and cell growth arrest

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2002
Brian I. Carr
The main function of K vitamins is to act as co-factors for ,-glutamyl carboxylase. However, they have also recently been shown to inhibit cell growth. We have chemically synthesized a series of K vitamin analogs with various side chains at the 2 or 3 position of the core naphthoquinone structure. The analogs with short thio-ethanol side chains are found to be more potent growth inhibitors in vitro of various tumor cell lines. Cpd 5 or [2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone] is one of the most potent. The anti-proliferation activity of these compounds is antagonized by exogenous thiols but not by non-thiol antioxidants. This suggests that the growth inhibition is mediated by sulfhydryl arylation of cellular glutathione and cysteine-containing proteins and not by oxidative stress. The protein tyrosine phosphatases (PTP) are an important group of proteins that contain cysteine at their catalytic site. PTPs regulate mitogenic signal transduction and cell cycle progression. PTP inhibition by Cpd 5 results in prolonged tyrosine phosphorylation and activation of several kinases and transcription factors including EGFR, ERK1/2, and Elk1. Cpd 5 could activate ERK1/2 either by signaling from an activated EGFR, which is upstream in the signaling cascade, or by direct inhibition of ERK1/2 phosphatase(s). Prolonged ERK1/2 phosphorylation strongly correlates with Cpd 5-mediated growth inhibition. Cpd 5 can also bind to and inhibit the Cdc25 family of dual specific phosphatases. As a result, several Cdc25 substrates (Cdk1, Cdk2, Cdk4) involved in cell cycle progression are tyrosine phosphorylated and thereby inhibited by its action. Cpd 5 could also inhibit both normal liver regeneration and hepatoma growth in vivo. DNA synthesis during rat liver regeneration following partial hepatectomy, transplantable rat hepatoma cell growth, and glutathione-S-transferase-pi expressing hepatocytes after administration of the chemical carcinogen diethylnitrosamine, are all inhibited by Cpd 5 administration. The growth inhibitory effect during liver regeneration and transplantable tumor growth is also correlated with ERK1/2 phosphorylation induced by Cpd 5. Thus, Cpd 5-mediated inhibition of PTPs, such as Cdc25 leads to cell growth arrest due to altered activity of key cellular kinases involved in signal transduction and cell cycle progression. This prototype K vitamin analog represents a novel class of growth inhibitor based upon its action as a selective PTP antagonist. It is clearly associated with prolonged ERK1/2 phosphorylation, which is in contrast with the transient ERK1/2 phosphorylation induced by growth stimulatory mitogens. © 2002 Wiley-Liss, Inc. [source]


Simaomicin ,, a polycyclic xanthone, induces G1 arrest with suppression of retinoblastoma protein phosphorylation

CANCER SCIENCE, Issue 2 2009
Yukio Koizumi
Recent progress in cancer biology research has shown that abnormal proliferation in tumor cells can be attributed to aberrations in cell cycle regulation, especially in G1 phase. During the course of searching for microbial metabolites that affect cell cycle distribution, we have found that simaomicin ,, a polycyclic xanthone antibiotic, arrests the cell cycle at G1 phase. Treatment of T-cell leukemia Jurkat cells with 3 nM simaomicin , induced an increase in the number of cells in G1 and a decrease in those in G2,M phase. Cell cycle aberrations induced by simaomicin , were also detected in colon adenocarcinoma HCT15 cells. Simaomicin , had antiproliferative activities in various tumor cell lines with 50% inhibitory concentration values in the range of 0.3,19 nM. Furthermore, simaomicin , induced an increase in cellular caspase-3 activity and DNA fragmentation, indicating that simaomicin , promotes apoptosis. The retinoblastoma protein phosphorylation status of simaomicin ,-treated cell lysate was lower than that of control cells, suggesting that the target molecule of simaomicin , is in a pathway upstream of retinoblastoma protein phosphorylation. In the course of evaluating polycyclic xanthone antibiotics structurally related to simaomicin ,, we also found that cervinomycin A1 stimulated accumulation of treated cells in G1 phase. These results indicate that the polycyclic xanthones, including simaomicin , and cervinomycin A1, may be candidate cancer chemotherapeutic agents. (Cancer Sci 2009; 100: 322,326) [source]


DJ-927, a novel oral taxane, overcomes P-glycoprotein-mediated multidrug resistance in vitro and in vivo

CANCER SCIENCE, Issue 5 2003
Motoko Shionoya
DJ-927 is a novel taxane, which was selected for high solubility, non-neurotoxicity, oral bioavailability, and potent antitumor activity. In this study, we compared the in vitro and in vivo efficacy of DJ-927 with those of paclitaxel and docetaxel. DJ-927 exhibited stronger cytotoxicity than paclitaxel and docetaxel in various tumor cell lines, especially against P-glycoprotein (P-gp)-expressing cells. The cytotoxicity of DJ-927, unlike those of other taxanes, was not affected by the P-gp expression level in tumor cells, or by the co-presence of a P-gp modulator. When intracellular accumulation of the three compounds was compared, intracellular amounts of DJ-927 were much higher than those of paclitaxel or docetaxel, particularly in P-gp-positive cells. In vivo, DJ-927 showed potent antitumor effects against two human solid tumors in male BALB/c- nu/nu mice, and yielded significant life-prolongation in a murine liver metastasis model with male C57BL/6 mice, in which neither paclitaxel nor docetaxel was effective. The results demonstrate the superior efficacy of orally administered DJ-927 over intravenously administered paclitaxel or docetaxel against P-gp-expressing tumors, probably due to higher intracellular accumulation. A phase I clinical trials of DJ-927 is currently ongoing in the US. (Cancer Sci 2003; 94: 459,466) [source]