Various Process Parameters (various + process_parameter)

Distribution by Scientific Domains


Selected Abstracts


Synergism of microwave irradiation and enzyme catalysis in synthesis of isoniazid

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2007
Ganapati D Yadav
Abstract Isoniazid is a useful antitubercular drug widely employed in combination therapy with rifampicin. The synthesis of isoniazid from ethyl isonicotinate and hydrazine hydrate was studied in non-aqueous media via lipase-catalyzed hydrazinolysis under both conventional heating and microwave irradiation by using different supported lipases. Among three different commercial lipases used, namely Novozym 435 (Candida antarctica lipase), Lipozyme RM IM (Rhizomucor miehei lipase) and Lipozyme TL IM (Thermomyces lanuginosus lipase), Novozym 435 was found to be the most effective, with conversion of 54% for equimolar concentrations at 50 °C in 4 h. The rate of reaction as well as final conversion increased synergistically under microwave irradiation in comparison with conventional heating, which showed 36.4% conversion, even after 24 h, for the control experiment. Effects of various process parameters such as speed of agitation, catalyst loading, substrate concentration, product concentration and temperature were studied. A kinetic model is also described. Copyright © 2007 Society of Chemical Industry [source]


APPLICATION OF RESPONSE SURFACE METHODOLOGY FOR THE OSMOTIC DEHYDRATION OF CARROTS

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 6 2006
BAHADUR SINGH
ABSTRACT Osmotic dehydrations of carrot cubes in sodium chloride salt solutions at different solution concentrations, temperatures and process durations were analyzed for water loss and solute gain. The osmotically pretreated carrot cubes were further dehydrated in a cabinet dryer at 65C and were then rehydrated in water at ambient temperature for 8,10 h and analyzed for rehydration ratio, color and overall acceptability of the rehydrated product. The process was optimized for maximum water loss, rehydration ratio and overall acceptability of rehydrated product, and for minimum solute gain and shrinkage of rehydrated product by response surface methodology. The optimum conditions of various process parameters were 11% salt concentration, 30C osmotic solution temperature and process duration of 120 min. [source]


Physicochemical characterization of papain entrapped in ionotropically cross-linked kappa-carrageenan gel beads for stability improvement using Doehlert shell design

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2006
Mayur G. Sankalia
Abstract This work examines the influence of various process parameters on papain entrapped in cross-linked ,-carrageenan beads for improvement of its stability. A Doehlert shell design (DSD) was employed to investigate the effect of three process variables, namely ,-carrageenan concentration, KCl concentration, and hardening time, on the entrapment, time required for 50% enzyme release (T50), time required for 90% enzyme release (T90), and particle size. The beads were prepared by dropping the ,-carrageenan containing papain into a magnetically stirred KCl solution. Topographical characterization was carried out by scanning electron microscopy and entrapment was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimetry. Stability testing was carried out according to the International Conference on Harmonization (ICH) guidelines for zone III and IV. A polymeric matrix was prepared with ,-carrageenan (3.5% w/v) and potassium chloride (0.5 M) using the ionotropic gelation method, with a hardening time of 20 min. Beads characterized by a spherical disc shape with a collapsed center, an absence of aggregates, an entrapment of 82.75%, a T90 value of 55.36 min, and a composite index of 88.55 were produced. The shelf-life of the enzyme-loaded beads was found to increase to 3.63 years compared with 1.01 years for the conventional formulation. It can be inferred that the proposed methodology can be used to prepare papain-loaded ,-carrageenan beads for stability improvement. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95: 1994,2013, 2006 [source]


Effect of chitosan crosslinking on bitterness of artemether using response surface methodology

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2008
Punit P. Shah
This work examines the influence of various process parameters on artemether entrapped in crosslinked chitosan microparticles for masking bitterness. A central composite design was used to optimize the experimental conditions for bitterness masking. Critical parameters such as the amounts of artemether, chitosan and crosslinking agent have been studied to evaluate how they affect responses such as incorporation efficiency, particle size and drug release at pH 6.8. The desirability function approach has been used to find the best compromise between the experimental results. The optimized microparticles were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Bitterness score was evaluated by human gustatory sensation test. Multiple linear regression analysis revealed that the crosslinking of chitosan significantly affects incorporation efficiency, particle size and drug release at pH 6.8. The bitterness score of microparticles was decreased to 0, compared with 3+ for pure artemether. The proposed method completed masked the bitter taste of artemether. [source]


Assessing local residence time distributions in screw extruders through a new in-line measurement instrument

POLYMER ENGINEERING & SCIENCE, Issue 4 2006
Xian-Ming Zhang
This work aimed at developing a new instrument to measure in real time the residence time distribution (RTD) in screw extruders. The instrument followed the same principle as the one reported in the literature but possessed several important advantages. For example, the detection system had two probes that allowed to simultaneously measure RTDs at any two different locations of an extruder, thus providing the possibility of calculating the local RTD between them by a deconvolution method based on a statistical theory for the RTD. Its performance was evaluated on a corotating twin-screw extruder using anthracene as tracer and polystyrene as flowing material. The effects of various process parameters such as feed rate and screw speed on the RTDs were investigated. The emphasis was placed, however, on the effect of the staggering angle of kneading discs on local RTDs both in the kneading zone itself and its neighboring upstream and downstream screw zones. This work is in support of an ongoing project on the simulation of flow in corotating twin-screw extruders. POLYM. ENG. SCI., 46:510,519, 2006. © 2006 Society of Plastics Engineers. [source]