Home About us Contact | |||
Various Observations (various + observation)
Selected AbstractsDevelopment of a historical ice database for the study of climate change in CanadaHYDROLOGICAL PROCESSES, Issue 18 2002Frédéric Lenormand Abstract The Canadian government has been compiling various observations on freshwater and coastal sea ice conditions for many years. However, the records are not easily accessible and are dispersed within different government departments. Given this, a major effort was undertaken in order to gather all available observations into a common database,the Canadian Ice Database (CID). This database will respond to the needs for climate monitoring in Canada, the validation and improvement of numerical ice models and the development of new remote-sensing methods. Indeed, several studies have shown that freshwater ice and sea ice are good proxy indicators of climate variability and change. The first version of CID contains in situ observations from 757 sites distributed across Canada, which were originally kept on digital or paper records at the Meteorological Service of Canada Headquarters and the Canadian Ice Service (CIS). The CID holds 63 546 records covering the period from ice season 1822,23 to 2000,01. An analysis of the database allows one to trace the temporal evolution of the ice networks. The freeze-up/break-up network of 2000,01 only represents 4% of what it was in 1985,86. A drastic decline of the ice thickness and the snow on ice network is also observable. In 1997,98, it represented only 10% of the network that existed in 1984,85. The major budget cuts in Canadian government agencies during the late 1980s and the 1990s offer the most plausible explanation for the drastic decline in the ice observation networks. Weekly ice coverage determination on large lakes from satellite imagery by the CIS and the national volunteer ice monitoring program, IceWatch, may provide a means of reviving, at least, the freeze-up/break-up network. Copyright © 2002 John Wiley & Sons, Ltd. [source] Identification of five chromosomal regions involved in predisposition to melanoma by genome-wide scan in the MeLiM swine modelINTERNATIONAL JOURNAL OF CANCER, Issue 1 2004Claudine Geffrotin Abstract In human familial melanoma, 3 risk susceptibility genes are already known, CDKN2A, CDK4 and MC1R. However, various observations suggest that other melanoma susceptibility genes have not yet been identified. To search for new susceptibility loci, we used the MeLiM swine as an animal model of hereditary melanoma to perform a genome scan for linkage to melanoma. Founders of the affected MeLiM stock were crossed with each other and with healthy Duroc pigs, generating MeLiM, F1 and backcross families. As we had previously excluded the MeLiM CDKN2A gene, we paid special attention to CDK4 and MC1R, as well as to other candidates such as BRAF and the SLA complex, mapping them on the swine radiation hybrid map and/or isolating close microsatellite markers to introduce them into the genome scan. The results revealed, first, that swine melanoma was inherited as an autosomal dominant trait with incomplete penetrance, preferably in black animals. Second, 4 chromosomal regions potentially involved in melanoma susceptibility were identified on Sus Scrofa chromosomes (SSC) 1, 2, 7 and 8, respectively, in intervals 44,103, 1.9,18, 59,73 and 47,62 cM. A fifth region close to MC1R was revealed on SSC 6 by analyzing an individual marker located at position 7.5 cM. Lastly, CDK4 and BRAF were unlikely to be melanoma susceptibility genes in the MeLiM swine model. The 3 regions on SSC 1, 6 and 7, respectively, have counterparts on human chromosomes (HSA) 9p, 16q and 6p, harboring melanoma candidate loci. The 2 others, on SSC 2 and 8, have counterparts on HSA 11 and 4, which might therefore be of interest for human studies. © 2004 Wiley-Liss, Inc. [source] A very extended reionization epoch?MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005A. Melchiorri ABSTRACT The recent observations of cross temperature,polarization power spectra of the cosmic microwave background (CMB) made by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite are in better agreement with a high value of the Thomson scattering optical depth ,, 0.17. This value is close to ,= 0.3, which is taken as the upper limit in the parameter extraction analysis made by the WMAP team. However, models with ,, 0.3 provide a good fit to current CMB data and are not significantly excluded when combined with large-scale structure data. By making use of a self-consistent reionization model, we verify the astrophysical feasibility of models with ,, 0.3. It turns out that current data on various observations related to the thermal and ionization history of the intergalactic medium are not able to rule out ,, 0.3. The possibility of a very extended reionization epoch can significantly undermine the WMAP constraints on crucial cosmological parameters such as the Hubble constant, the spectral index of primordial fluctuations and the amplitude of dark matter clustering. [source] New photometry and astrometry of the isolated neutron star RX J0720.4,3125 using recent VLT/FORS observations,ASTRONOMISCHE NACHRICHTEN, Issue 3 2010T. Eisenbeiss Abstract Since the first optical detection of RX J0720.4,3125 various observations have been performed to determine astrometric and photometric data. We present the first detection of the isolated neutron star in the V Bessel filter to study the spectral energy distribution and derive a new astrometric position. At ESO Paranal we obtained very deep images with FORS 1 (three hours exposure time) of RX J0720.4,3125 in the V Bessel filter in January 2008. We derive the visual magnitude by standard star aperture photometry. Using sophisticated resampling software we correct the images for field distortions. Then we derive an updated position and proper motion value by comparing its position with FORS 1 observations of December 2000. We calculate a visual magnitude of V = 26.81 ± 0.09 mag, which is seven times in excess of what is expected from X-ray data, but consistent with the extant U, B, and R data. Over about a seven year epoch difference we measured a proper motion of , = 105.1 ± 7.4 mas yr,1 towards , = 296.951° ± 0.0063° (NW), consistent with previous data (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |