Home About us Contact | |||
Various Metals (various + metal)
Terms modified by Various Metals Selected AbstractsCopper(II) Triflate as a Source of Triflic Acid: Effective, Green Catalysis of Hydroalkoxylation ReactionsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 14-15 2009Mathieu J.-L. Abstract The hydroalkoxylation of dicyclopentadiene (DCPD) and norbornene (NB) with 2-hydroxyethyl methacrylate (HEMA) for the synthesis of industrially relevant monomers has been investigated with various metal-based Lewis acids and strong Brønsted acids. In the absence of other additives, copper(II) triflate is the most efficient catalyst system. Kinetics, electron spin resonance (ESR), catalyst poisoning and cross experiments indicate that triflic acid (TfOH) is the true active catalyst in these reactions. This in situ generation of TfOH occurs via reduction of Cu(OTf)2 by the olefin reagent (DCPD, NB). The copper ions present in the reaction mixture act as radical polymerization retardants, preventing polymerization of HEMA (which is observed with most other metal salts and strong Brønsted acids investigated), thus improving the selectivity and yield (up to 95%) for the desired products. These observations have led to the development of a highly effective green process, using bulk reagents (no solvent) and a cheap, metal-free catalyst system, based on TfOH and a phenolic radical inhibitor (2,5-di- tert -butylhydroxytoluene, BHT). [source] Electrospray ionisation with selected reaction monitoring for the determination of Mn-citrate, Fe-citrate, Cu-citrate and Zn-citrateRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 15 2009Volker Nischwitz Citrate complexes of Mn and Fe, and potentially those of Cu and Zn, are considered as important low molecular mass species in human serum and cerebrospinal fluid (CSF). For example, Mn is supposed to enter the brain under excess exposure as Mn-citrate leading to neurotoxic effects. Mn-citrate has been characterised in human CSF using chromatography and electrophoresis online with inductively coupled plasma mass spectrometry, but not yet with molecular mass spectrometry. Therefore, this study explores the potential of electrospray ionisation (ESI) with selected reaction monitoring (SRM) for the detection of metal-citrate complexes, in particular Mn-citrate. The collision-induced dissociation of precursor ions with various metal:citrate stoichiometries was studied for Mn-citrate, Fe-citrate, Cu-citrate and Zn-citrate. High selectivity was achieved for Mn(II)-citrate even in respect to Fe(III)-citrate which forms isobaric precursor ions. The limit of detection for Mn-citrate was estimated to be around 250,µg,L,1 (referring to the total Mn content in the standard) using flow injection. The sensitivity was sufficient for the determination of Mn-citrate in standard solutions and in an extract of an Mn-citrate-containing supplement. An improved ESI source design is expected to reduce the limits of detection significantly. The developed ESI-SRM method has the potential to provide complementary data for the quality control of current separation methods for metal citrates using element-selective detection, with application to biomedical samples and further matrices. Copyright © 2009 John Wiley & Sons, Ltd. [source] Temporal and spatial monitoring of mobile nanoparticles in a vineyard soil: evidence of nanoaggregate formationEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2010N. Perdrial Mechanisms of formation, stabilization, liberation, transport and deposition of nanoparticles and their relationship to contaminant transport remain scarcely investigated in natural porous media. This study investigated nanoparticles mobilized in the pore space of a French vineyard soil by observing mobile soil-derived organic matter (SOM) and minerals in pore fluids over an 8-month monitoring period. Samples were collected in situ and investigated by transmission electron microscopy coupled to electron-dispersive spectroscopy. The main types of nanoparticles transported within the soil were clay, bacteria, SOM and nanoaggregates. Nanometric clay particles were enriched in various metals (Fe, Zn, As and Pb) and organically-derived constituents. Analyses of bacteria showed enrichments in Pb. SOM consisted of small carbon-based particles (<200 nm) with slight enrichments in various metals. The fourth dominant particle type consisted of the association of particles forming organo-mineral nanoaggregates. Based on the study of more than 22 500 individual particles, we propose a schematic interpretation of the evolution of the distribution of particles with depth in a soil profile. The increase of nanoaggregates with depth in the soil seemed to be largely controlled by the ionic strength of soil water and soil hydrodynamics. Seasonal variations in temperature also appear to affect nanoaggregation. Based on the architecture of the nanoaggregates, we propose an improvement of pre-existing models of microaggregation by focusing on early aggregation stages suggesting the importance of bacteria and electrostatic interactions. The process of nanoaggregation can enhance the net reactivity of soil with respect to transported suspended matter, including heavy metals, and can initiate the process of C sequestration. [source] Porous silicon/metal nanocomposite with tailored magnetic propertiesPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2009Petra Granitzer Abstract Porous silicon (PS) templates in the meso/macro porous regime with oriented pores clearly separated from each other and filled in a galvanic deposition process with various metals, especially ferromagnetic ones are magnetically investigated. The employment of different metals (e.g. Ni, Co, NiCo) together with the variation of the electrochemical deposition parameters modifies the structural characteristics of the PS/metal nanocomposite and thus leads to distinct magnetic properties of the hybrid system. Furthermore the use of different PS-templates which means a change of the pore-diameter and interpore spacing results also in various magnetic characteristics, especially influences on the magnetic interactions among the deposited metal nanostructures. Therefore the specimens show tailored magnetic properties like coercivity, squareness and magnetic anisotropy. The achieved nanocomposite merges electronic properties of a semiconductor with nanomagnetism and therefore opens the possibility of integrated spin-based electronic devices. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Electrospray mass spectrometric studies of the complexational behavior of maleonitrile thiacrown ethers with various metalsRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2006Ines Starke Electrospray ionization was employed to study the mass spectrometric behavior of the maleonitrile tetrathiacrown ethers mn12S4 (1) and mn13S4 (2) and maleonitrile pentathiacrown ether mn15S5 (3) and of their complexes with various metal salts (MX2, M,=,Pd, Pt, Ni, Co, Fe; X,=,Cl, CrCl3, Ni(BF4)2, TlPF6 or Cd(NO3)2) and Cu(SO3CF3)2. Both singly charged, [MXL]+ and [MXL2]+, and doubly charged complexes, [MLn]2+ (n,=,2,5), were observed. The formation of the different complexes consisting of the transition metal ion, the counterion and the various crown ethers and their subsequent dissociation was also studied by collision-induced dissociation measurements which were also used to evaluate the relative stabilities of the complexes. It was found that the collisional voltages for the dissociation of the complexes were generally greater in the [MXL]+ complexes than in the corresponding [MXL2]+ complexes. Copyright © 2006 John Wiley & Sons, Ltd. [source] Natural revegetation of coal fly ash in a highly saline disposal lagoon in Hong KongAPPLIED VEGETATION SCIENCE, Issue 3 2008L.M. Chu Abstract. Question: What is the relationship of the naturally colonizing vegetation and substrate characteristics in fly ash lagoons? Location: West lagoon, Deep Bay, a 13-ha coastal lagoon in Hong Kong in subtropical Southeast Asia. Methods: Vegetation establishment was examined in a coal fly ash lagoon two years after its abandonment to investigate the distribution of vegetation in relationship to the chemical properties of the fly ash in the lagoon. A greenhouse experiment assessed the limits imposed on plant growth in fly ash. Results: The fly ash was saline, slightly alkaline and very poor in organic matter and nitrogen. Ash from bare and vegetated areas differed significantly in their salinity and extractable concentrations of inorganic nitrogen and various metals. Bare ash had a significantly higher conductivity and extractable sodium, aluminum, manganese, potassium, and lead. In total 11 plant species that belonged to seven families were found growing on the fly ash; all species except the shrub Tamarix chinensis were herbaceous. Using discriminant analysis, the most important factors in distinguishing bare and vegetated ashes were conductivity and sodium. Cluster analysis of bare samples gave two distinct groups, one from the periphery of the lagoon, which had lower sodium, conductivity, organic carbon, potassium and copper, and the other from a second group that contained ashes from the central region of the lagoon. Results of the greenhouse experiment showed that the inhibition of plant growth was significantly correlated with the presence of soluble toxic elements in ash. Conclusion: Toxicity and salinity seem to be the major limiting factors to plant establishment in fly ash, and these factors must be ameliorated for the successful reclamation of these fly ash lagoons. [source] |