Home About us Contact | |||
Various Ligands (various + ligand)
Selected AbstractsLocalization of the A kinase anchoring protein AKAP79 in the human hippocampusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000Attila Sík Abstract The phosphorylation state of the proteins, regulated by phosphatases and kinases, plays an important role in signal transduction and long-term changes in neuronal excitability. In neurons, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and calcineurin (CN) are attached to a scaffold protein, A kinase anchoring protein (AKAP), thought to anchor these three enzymes to specific sites of action. However, the localization of AKAP, and the predicted sites of linked phosphatase and kinase activities, are still unknown at the fine structural level. In the present study, we investigated the distribution of AKAP79 in the hippocampus from postmortem human brains and lobectomy samples from patients with intractable epilepsy, using preembedding immunoperoxidase and immunogold histochemical methods. AKAP79 was found in the CA1, presubicular and subicular regions, mostly in pyramidal cell dendrites, whereas pyramidal cells in the CA3, CA2 regions and dentate granule cells were negative both in postmortem and in surgical samples. In some epileptic cases, the dentate molecular layer and hilar interneurons also became immunoreactive. At the subcellular level, AKAP79 immunoreactivity was present in postsynaptic profiles near, but not attached to, the postsynaptic density of asymmetrical (presumed excitatory) synapses. We conclude that the spatial selectivity for the action of certain kinases and phosphatases regulating various ligand- and voltage-gated channels may be ensured by the selective presence of their anchoring protein, AKAP79, at the majority of glutamatergic synapses in the CA1, but not in the CA2/CA3 regions, suggesting profound differences in signal transduction and long-term synaptic plasticity between these regions of the human hippocampus. [source] Models of white matter injury: Comparison of infectious, hypoxic-ischemic, and excitotoxic insultsDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2002Henrik Hagberg Abstract White matter damage (WMD) in preterm neonates is strongly associated with adverse outcome. The etiology of white matter injury is not known but clinical data suggest that ischemia-reperfusion and/or infection-inflammation are important factors. Furthermore, antenatal infection seems to be an important risk factor for brain injury in term infants. In order to explore the pathophysiological mechanisms of WMD and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, numerous novel animal models have been developed over the past decade. WMD can be induced by antenatal or postnatal administration of microbes (E. coli or Gardnerella vaginalis), virus (border disease virus) or bacterial products (lipopolysaccharide, LPS). Alternatively, various hypoperfusion paradigms or administration of excitatory amino acid receptor agonists (excitotoxicity models) can be used. Irrespective of which insult is utilized, the maturational age of the CNS and choice of species seem critical. Generally, lesions with similarity to human WMD, with respect to distribution and morphological characteristics, are easier to induce in gyrencephalic species (rabbits, dogs, cats and sheep) than in rodents. Recently, however, models have been developed in rats (PND 1,7), using either bilateral carotid occlusion or combined hypoxia-ischemia, that produce predominantly white matter lesions. LPS is the infectious agent most often used to produce WMD in immature dogs, cats, or fetal sheep. The mechanism whereby LPS induces brain injury is not completely understood but involves activation of toll-like receptor 4 on immune cells with initiation of a generalized inflammatory response resulting in systemic hypoglycemia, perturbation of coagulation, cerebral hypoperfusion, and activation of inflammatory cells in the CNS. LPS and umbilical cord occlusion both produce WMD with quite similar distribution in 65% gestational sheep. The morphological appearance is different, however, with a more pronounced infiltration of inflammatory cells into the brain and focal microglia/macrophage ("inflammatory WMD") in response to LPS compared to hypoperfusion evoking a more diffuse microglial response usually devoid of cellular infiltrates ("ischemic WMD"). Furthermore, low doses of LPS that by themselves have no adverse effects in 7-day-old rats (maturation corresponding to the near term human fetus), dramatically increase brain injury to a subsequent hypoxic-ischemic challenge, implicating that bacterial products can sensitize the immature CNS. Contrary to this finding, other bacterial agents like lipoteichoic acid were recently shown to induce tolerance of the immature brain suggesting that the innate immune system may respond differently to various ligands, which needs to be further explored. MRDD Research Reviews 2002;8:30,38. © 2002 Wiley-Liss, Inc. [source] PRECLINICAL STUDY: FULL ARTICLE: Tolerance to 3,4-methylenedioxymethamphetamine is associated with impaired serotonin releaseADDICTION BIOLOGY, Issue 3 2010Karen Jones ABSTRACT Tolerance to the behavioural effects of 3,4-methylenedioxymethamphetamine (MDMA) following high dose exposure has been attributed to alterations in serotonergic systems. The present study aimed to determine whether decreased 5-HT release and/or 5-HT2A/C receptor desensitization might play a role in tolerance by measuring the response to selective ligands following MDMA exposure. To this end, the latency to nose poke and emerge from a hide box to an open field arena following administration of various ligands to MDMA pre-treated and control rats was measured. Acute exposure to MDMA (0.0,3.3 mg/kg), the 5-HT releasing stimulant fenfluramine (0.0,2.0 mg/kg) and the 5-HT2 receptor agonist m-CPP (0.0,1.25 mg/kg) increased nose poke and emergence latency. Following administration of doses that produce 5-HT2A receptor-mediated behaviours, the 5-HT2 receptor agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane failed to alter nose poke and emergence latency, suggesting a limited role of this receptor subtype in these behaviours. Activation of 5-HT2C receptors was implicated in the behavioural response to both MDMA and m-CPP since the increased emergence latency was dose-dependently attenuated by pre-treatment with the selective 5-HT2C receptor antagonist RS102221 (0.0,1.0 mg/kg). Tolerance to the behavioural effect of MDMA and fenfluramine but not m-CPP was produced by prior exposure to MDMA (10 mg/kg administered at two-hour intervals, total 40 mg/kg), and tissue levels of 5-HT and 5-HIAA were decreased. These findings suggest that tolerance to the increased nose poke and emergence latency produced by MDMA is due to impaired 5-HT release. [source] Co-option of endocytic functions of cellular caveolae by pathogensIMMUNOLOGY, Issue 1 2001J.-S. Shin Summary It is increasingly becoming clear that various immune cells are infected by the very pathogens that they are supposed to attack. Although many mechanisms for microbial entry exist, it appears that a common route of entry shared by certain bacteria, viruses and parasites involves cellular lipid-rich microdomains sometimes called caveolae. These cellular entities, which are characterized by their preferential accumulation of glycosylphosphatidylinositol (GPI)-anchored molecules, cholesterol and various glycolipids, and a distinct protein (caveolin), are present in many effector cells of the immune system including neutrophils, macrophages, mast cells and dendritic cells. These structures have an innate capacity to endocytoze various ligands and traffic them to different intracellular sites and sometimes, back to the extracellular cell surface. Because caveolae do not typically fuse with lysosomes, the ligands borne by caveolar vesicles are essentially intact, which is in marked contrast to ligands endocytozed via the classical endosome,lysosome pathway. A number of microbes or their exotoxins co-opt the unique features of caveolae to enter and traffic, without any apparent loss of viability and function, to different sites within immune and other host cells. In spite of their wide disparity in size and other structural attributes, we predict that a common feature among caveolae-utilizing pathogens and toxins is that their cognate receptor(s) are localized within plasmalemmal caveolae of the host cell. [source] Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexateACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2009Olga Senkovich The flagellate protozoan parasite Trypanosoma cruzi is the pathogenic agent of Chagas disease (also called American trypanosomiasis), which causes approximately 50,000 deaths annually. The disease is endemic in South and Central America. The parasite is usually transmitted by a blood-feeding insect vector, but can also be transmitted via blood transfusion. In the chronic form, Chagas disease causes severe damage to the heart and other organs. There is no satisfactory treatment for chronic Chagas disease and no vaccine is available. There is an urgent need for the development of chemotherapeutic agents for the treatment of T. cruzi infection and therefore for the identification of potential drug targets. The dihydrofolate reductase activity of T. cruzi, which is expressed as part of a bifunctional enzyme, dihydrofolate reductase,thymidylate synthase (DHFR-TS), is a potential target for drug development. In order to gain a detailed understanding of the structure,function relationship of T. cruzi DHFR, the three-dimensional structure of this protein in complex with various ligands is being studied. Here, the crystal structures of T. cruzi DHFR-TS with three different compositions of the DHFR domain are reported: the folate-free state, the complex with the lipophilic antifolate trimetrexate (TMQ) and the complex with the classical antifolate methotrexate (MTX). These structures reveal that the enzyme is a homodimer with substantial interactions between the two TS domains of neighboring subunits. In contrast to the enzymes from Cryptosporidium hominis and Plasmodium falciparum, the DHFR and TS active sites of T. cruzi lie on the same side of the monomer. As in other parasitic DHFR-TS proteins, the N-terminal extension of the T. cruzi enzyme is involved in extensive interactions between the two domains. The DHFR active site of the T. cruzi enzyme shows subtle differences compared with its human counterpart. These differences may be exploited for the development of antifolate-based therapeutic agents for the treatment of T. cruzi infection. [source] Crystallization, diffraction data collection and preliminary crystallographic analysis of DING protein from Pseudomonas fluorescensACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2007Sebastien Moniot PfluDING is a phosphate-binding protein expressed in Pseudomonas fluorescens. This protein is clearly distinct from the bacterial ABC transporter soluble phosphate-binding protein PstS and is more homologous to eukaryotic DING proteins. Interestingly, bacterial DING proteins have only been detected in certain Pseudomonas species. Although DING proteins seem to be ubiquitous in eukaryotes, they are systematically absent from eukaryotic genomic databases and thus are still quite mysterious and poorly characterized. PfluDING displays mitogenic activity towards human cells and binds various ligands such as inorganic phosphate, pyrophosphate, nucleotide triphosphates and cotinine. Here, the crystallization of PfluDING is reported in a monoclinic space group (P21), with typical unit-cell parameters a = 36.7, b = 123.7, c = 40.8,Å, , = 90, , = 116.7, , = 90°. Preliminary crystallographic analysis reveals good diffraction quality for these crystals and a 1.43,Å resolution data set has been collected. [source] Enhanced antitumor efficacy of folate-linked liposomal doxorubicin with TGF-, type I receptor inhibitorCANCER SCIENCE, Issue 10 2010Yukimi Taniguchi Tumor cell targeting of drug carriers is a promising strategy and uses the attachment of various ligands to enhance the therapeutic potential of chemotherapy agents. Folic acid is a high-affinity ligand for folate receptor, which is a functional tumor-specific receptor. The transforming growth factor (TGF)-, type I receptor (T,R-I) inhibitor A-83-01 was expected to enhance the accumulation of nanocarriers in tumors by changing the microvascular environment. To enhance the therapeutic effect of folate-linked liposomal doxorubicin (F-SL), we co-administrated F-SL with A-83-01. Intraperitoneally injected A-83-01-induced alterations in the cancer-associated neovasculature were examined by magnetic resonance imaging (MRI) and histological analysis. The targeting efficacy of single intravenous injections of F-SL combined with A-83-01 was evaluated by measurement of the biodistribution and the antitumor effect in mice bearing murine lung carcinoma M109. A-83-01 temporarily changed the tumor vasculature around 3 h post injection. A-83-01 induced 1.7-fold higher drug accumulation of F-SL in the tumor than liposome alone at 24 h post injection. Moreover F-SL co-administrated with A-83-01 showed significantly greater antitumor activity than F-SL alone. This study shows that co-administration of T,R-I inhibitor will open a new strategy for the use of FR-targeting nanocarriers for cancer treatment. (Cancer Sci 2010); 00: 000,000 [source] Spontaneous Organization of Uniform CeO2 Nanoflowers by 3D Oriented Attachment in Hot Surfactant Solutions Monitored with an In Situ Electrical Conductance TechniqueCHEMISTRY - A EUROPEAN JOURNAL, Issue 11 2008Huan-Ping Zhou Abstract Uniform CeO2 nanoflowers were synthesized by rapid thermolysis of (NH4)2Ce(NO3)6 in oleic acid (OA)/oleylamine (OM), by a unique 3D oriented-attachment mechanism. CeO2 nanoflowers with controlled shape (cubic, four-petaled, and starlike) and tunable size (10,40,nm) were obtained by adjusting the reaction conditions including solvent composition, precursor concentration, reaction temperature, and reaction time. The nanoflower growth mechanism was investigated by in situ electrical conductance measurements, transmission electron microscopy, and UV/Vis spectroscopy. The CeO2 nanoflowers are likely formed in two major steps, that is, initial formation of ceria cluster particles capped with various ligands (e.g., OA, OM, and NO3,) via hydrolysis of (NH4)2Ce(NO3)6 at temperatures in the range 140,220,°C, and subsequent spontaneous organization of the primary particles into nanoflowers by 3D oriented attachment, due to a rapid decrease in surface ligand coverage caused by sudden decomposition of the precursor at temperatures above 220,°C in a strong redox reaction. After calcination at 400,°C for 4,h the 33.8,nm CeO2 nanoflowers have a specific surface area as large as 156,m2,g,1 with high porosity, and they are highly active for conversion of CO to CO2 in the low temperature range of 200,400,°C. The present approach has also been extended to the preparation of other transition metal oxide (CoO, NiO, and CuOx) nanoflowers. [source] Ligand binding strategies of human serum albumin: How can the cargo be utilized?CHIRALITY, Issue 1 2010Ankita Varshney Abstract Human serum albumin (HSA), being the most abundant carrier protein in blood and a modern day clinical tool for drug delivery, attracts high attention among biologists. Hence, its unfolding/refolding strategies and exogenous/endogenous ligand binding preference are of immense use in therapeutics and clinical biochemistry. Among its fellow proteins albumin is known to carry almost every small molecule. Thus, it is a potential contender for being a molecular cargo/or nanovehicle for clinical, biophysical and industrial purposes. Nonetheless, its structure and function are largely regulated by various chemical and physical factors to accommodate HSA to its functional purpose. This multifunctional protein also possesses enzymatic properties which may be used to convert prodrugs to active therapeutics. This review aims to highlight current overview on the binding strategies of protein to various ligands that may be expected to lead to significant clinical applications. Chirality, 2010. © 2009 Wiley-Liss, Inc. [source] Enantioseparation of extended metal atom chain complexes: Unique compounds of extraordinarily high specific rotationCHIRALITY, Issue 3 2007Molly M. Warnke Abstract Extended metal atom chains (EMACs) contain a linear metal chain wrapped by various ligands. Most complexes are of the form M3(dpa)4X2, where M = metal, dpa = 2,2,-dipyridylamide, and X = various anions. The ligands form helical coils about the metal chain, which results in chiral EMAC complexes. The EMACs containing the metals Co and Cu were partially separated in polar organic mode using a vancomycin-based chiral stationary phase. Under similar conditions, two EMACs with Ni metal and varying anions could be baseline separated. The polar organic mode was used because of the instability of the compounds in aqueous mobile phases. Also, these conditions are more conducive to preparative separations. Polarimetric measurements on the resolved enantiomers of Ni3(dpa)4Cl2 indicate that they have extraordinarily high specific rotations (on the order of 5000 deg cc/g dm). Chirality, 2007. © 2006 Wiley-Liss, Inc. [source] Inhibitory oligodeoxynucleotides , therapeutic promise for systemic autoimmune diseases?CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2005P. Lenert Summary Recent studies have shed new light on a possible link between the innate activation of plasmocytoid dendritic cells and marginal zone B cells and the pathogenesis of systemic lupus erythematosus. Animal studies have identified that this response requires the Toll-like receptor 9 (TLR9). Engagement of the TLR9 by various ligands, including non-canonical CpG-motifs, can cause or aggravate pathogenic autoantibody production and cytokine secretion in lupus. Attempts to neutralize this activity either by blocking the acidification of the endosomal compartment with chloroquine and related compounds, or by preventing the interaction between the CpG-DNA sequences and TLR9 using inhibitory oligonucleotides could be a promising therapeutic option for lupus. [source] |