Various Functional Groups (various + functional_groups)

Distribution by Scientific Domains


Selected Abstracts


Selective Oxidation of Acetophenones Bearing Various Functional Groups to Benzoic Acid Derivatives with Molecular Oxygen

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2009
Ryota Nakamura
Abstract Acetophenones substituted by alkyl, alkoxy, acetoxy, and halogen groups were selectively oxidized with molecular oxygen to the corresponding benzoic acids by using the N,N,,N,, -trihydroxyisocyanuric acid (THICA)/cobalt(II) acetate [Co(OAc)2] and THICA/Co(OAc)2/manganese(II) acetate [Mn(OAc)2]. For example, 4-methylacetophenone was selectively oxidized with molecular oxygen to 4-acetylbenzoic acid (85%) by THICA/Co(OAc)2 and to 4-methylbenzoic acid (93%) by Mn(OAc)2, while terephthalic acid was obtained in 93% with the THICA/Co(OAc)2/Mn(OAc)2 catalytic system. It is interesting that the acetyl group on the aromatic ring is efficiently converted by a very small amount of Mn(OAc)2 to the corresponding carboxylic acid, and that the present method provides a versatile route to acetylbenzoic acids which are difficult to prepare by conventional methods. [source]


Highly Efficient Fluorine-Promoted Intramolecular Condensation of Benzo[c]phenanthrene: A New Prospective on Direct Fullerene Synthesis

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 36 2009
Konstantin Yu.
Abstract Various functional groups have been tested as alternative promoters of the intramolecular condensation of benzo[c]phenanthrene under flash vacuum pyrolysis conditions. Methyl and fluorine functionalization were found to be promising approaches. Unexpectedly high selectivity was observed in the cyclization of fluorinated benzo[c]phenanthrenes. The mechanism for the condensation reaction and the advantages of fluorine as a promoter for the rational synthesis of fullerenes are discussed.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


ChemInform Abstract: Transition-Metal-Free Electrophilic Amination Between Aryl Grignard Reagents and N-Chloroamines.

CHEMINFORM, Issue 33 2010
Takuji Hatakeyama
Abstract Various functional groups are tolerated under the mild conditions. [source]


Cyclopalladated Ferrocenylimine as Efficient Catalyst for the Syntheses of Arylboronate Esters

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2010
Lianhui Wang
Abstract The cyclopalladated ferrocenylimine I and its phosphine adducts IIa,f were prepared and evaluated in the borylation of aryl halides. The tricyclohexylphosphine adduct IIb exhibited highly catalytic activity for the coupling of aryl and heteroaryl bromides containing various functional groups with low catalyst loading (2,mol%). Aryl and heteroaryl chlorides were smoothly converted into the corresponding boronates in the presence of the monophosphinobiaryl ligand (XPhos) adduct IIf. It was proposed that palladacycle was only a reservoir of the catalytically active species from the investigation on the reaction mechanism. [source]


Ruthenium-Catalyzed Oxidative Homo-Coupling of 2-Arylpyridines

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2009
Xiangyu Guo
Abstract A ruthenium-catalyzed oxidative homo-coupling reaction of 2-arylpyridines via CH activation was developed. The reaction could tolerate various functional groups on both the aryl and the pyridyl rings to afford a series of dimerized products with iron(III) chloride (FeCl3) as a stoichiometric oxidant. A tentative mechanism was proposed for this oxidative CH/CH homo-coupling. [source]


Evaluation of pollination syndromes in Antillean Gesneriaceae: evidence for bat, hummingbird and generalized flowers

JOURNAL OF ECOLOGY, Issue 2 2009
Silvana Martén-Rodríguez
Summary 1Current views about the predominance of generalization of pollination systems have stimulated controversy concerning the validity of pollination syndromes. In order to assess the extent to which floral characters reflect selection by the most important pollinators we evaluated pollination syndromes in a florally diverse plant group, the tribe Gesnerieae, a monophyletic plant radiation from the Antillean islands. 2The study species include representatives of three groups of floral phenotypes, two of which chiefly correspond to ornithophilous and chiropterophilous syndromes. The third group includes subcampanulate flowers (characterized by a corolla constriction above the nectar chamber) with combinations of traits not fitting classic pollination syndromes. 3Pollination systems were characterized for 19 Gesnerieae species in five Antillean islands between 2003 and 2007 and supplemented with observations of four Gesneriaceae species from Costa Rica. Pollinator visitation and frequency of contact with anthers or stigmas were used to calculate an index of pollinator importance. Eleven floral traits including morphology, phenology and rewards were used to assess clustering patterns in phenotype space. 4Multidimensional scaling analysis of floral traits resulted in two clusters comprising: (i) tubular, red to yellow-flowered species with diurnal anthesis, (ii) bell-shaped-flowered species; two groups of floral phenotypes were evident within the latter cluster, campanulate nocturnal and subcampanulate flowers. Correlations between pollinator importance values and floral axes revealed strong associations with the expected pollinators, hummingbirds for tubular flowers, and bats for campanulate flowers; subcampanulate-flowered species had generalized pollination systems including bats, hummingbirds and insects. Discriminant analysis of the multivariate set of floral traits correctly classified 19 out of 23 species into the predicted pollination categories. 5Synthesis. This study provides support for classic hummingbird and bat pollination syndromes, demonstrating the importance of pollinator-mediated selection in the floral diversification of Antillean Gesnerieae. However, there was evidence for generalized pollination systems in species characterized by a unique morphological trait (corolla constriction), but with variable combinations of other floral traits. These findings suggests that floral phenotypes might also evolve under selection by various functional groups of pollinators, and underscores the importance of considering the presence and effectiveness of all floral visitors in pollination studies. [source]


Initiating electropolymerization on graphene sheets in graphite oxide structure

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2010
Ali Eftekhari
Abstract Because of its special chemical composition, graphite oxide has peculiar influences on electrochemical processes. The existence of various functional groups significantly affects electropolymerization processes and the formation of conductive polymers. Electrochemical synthesis of polyaniline (as a prototype of conductive polymers) on a paste-based substrate of graphite oxide was investigated. In this case, the electropolymerization is significantly different from conventional cases, and the polymer is generated just during the first potential cycle. This can be attributed to the fact that graphite oxide can assist the monomer oxidation. Alternatively, electropolymerization was successfully performed inside the graphite oxide layers via electrochemical treatment of aniline-intercalated graphite oxide in the supporting electrolyte. Although these phenomena are related to the chemical composition of graphite oxide, the graphite prepared by the reduction of graphite oxide also displayed some advantages for the electropolymerization (over natural graphite). There is an emphasis on the morphological investigations throughout this study, because novel morphologies were observed in the system under investigation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2204,2213, 2010 [source]


Raman and IR spectral studies of D -phenylglycinium perchlorate

JOURNAL OF RAMAN SPECTROSCOPY, Issue 9 2002
S. Ramaswamy
The Raman and infrared spectra of D -phenylglycinium perchlorate were recorded at room temperature. Tentative vibrational assignments of the observed wavenumbers were made by comparison with the vibrational wavenumbers of glycine, phenylalanine and other similar compounds. Anions were found to coordinate through hydrogen bonding interactions to other ligands in the crystal, affecting the Td symmetry and thereby causing the degeneracies of several modes to be removed. The extensive intermolecular hydrogen bonding in the crystal leads to a shift of bands due to the stretching and bending modes of various functional groups. The broadening and appearance of multiple bands for the carbonyl stretching mode due to the resonance interaction is also discussed. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Preparation of monodisperse hydrophilic polymer microspheres with N,N,-methylenediacrylamide as crosslinker by distillation precipitation polymerization

POLYMER INTERNATIONAL, Issue 7 2007
Guangyu Liu
Abstract Highly crosslinked cauliflower-like poly(N,N,-methylenebisacrylamide) particles were prepared by distillation precipitation polymerization in neat acetonitrile with 2,2,-azobisisobutyronitrile as initiator. Monodisperse hydrophilic polymer microspheres with various functional groups, such as amide, pyrrolidone and carboxylic acid, with a spherical shape and smooth surface in the size range 120,600 nm were prepared by distillation precipitation copolymerizations of functional comonomers including N -isopropylacrylamide, N -vinylpyrrolidone, methacrylic acid with N,N,-methylenebisacrylamide as crosslinker. The polymer particles were formed and precipitated out from the reaction medium during the distillation of the solvent from the reaction system through an entropic precipitation manner. The effects of the solvent and the degree of crosslinking on the morphology and the loading capacity of the functional groups of the resultant polymer particles were investigated. The resulting polymer particles were characterized with scanning electron microscopy, transmission electron microscopy, dynamic light scattering and Fourier transform infrared spectroscopy. Copyright © 2007 Society of Chemical Industry [source]


Differential protein expression in human gliomas and molecular insights

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 4 2005
Vaibhav C. Chumbalkar
Abstract Gliomas are the most common of the primary intracranial tumors with astrocytomas constituting about 40%. Using clinically and histologically assessed astrocytomas, we have studied their protein profiles using a two-dimensional gel electrophoresis-mass spectrometry approach and identified differentially expressed proteins which may be useful molecular indicators to understand these tumors. Examination of the protein profiles of 27,astrocytoma samples of different grades revealed 72,distinct, differentially expressed proteins belonging to various functional groups such as cytoskeleton and intermediate filament proteins, heat shock proteins (HSPs), enzymes and regulatory proteins. Based on the consistency of their differential expression, 29,distinct proteins could be short-listed and may have a role in the pathology of astrocytomas. Some were found to be differentially expressed in both Grade,III and IV astrocytomas while others were associated with a particular grade. A notable observation was underexpression of Prohibitin, a potential tumor suppressor protein, Rho-GDP dissociation inhibitor, Rho-GDI, a regulator of Rho GTPases and HSPs as well as destabilization of glial fibrillary acidic protein, GFAP, major protein of the glial filaments, in Grade,III malignant tumors. We attempt to explain glioma malignancy and progression in terms of their combined role. [source]


Solvent selection for enhanced bioproduction of 3-methylcatechol in a two-phase partitioning bioreactor

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2007
George P. Prpich
Abstract The biotransformation of toluene to 3-methycatechol (3MC) via Pseudomonas putida MC2 was used as a model system for the development of a biphasic process offering enhanced overall volumetric productivity. Three factors were investigated for the identification of an appropriate organic solvent and they included solvent toxicity, bioavailability of the solvent as well as solvent affinity for 3MC. The critical log P (log Pcrit) of the biocatalyst was found to be 3.1 and log P values were used to predict a solvent's toxicity. The presence of various functional groups of candidate solvents were used to predict the absorption of 3MC and it was found that solvents possessing polarity showed an affinity towards 3MC. Bis (2-ethylhexyl) sebecate was selected for use in the biphasic system as it fulfilled all selection criteria. A two-phase biotransformation with BES and a 50% phase volume ratio, achieved an overall volumetric productivity of 440 mg 3MC/L-h, which was an improvement by a factor of approximately 4 over previously operated systems. Additional work focused on reducing the toluene feed in order to minimize possible toxicity and decrease loss of substrate (toluene), a result of volatilization. Toluene losses were reduced by a factor of 4, compared to previously operated systems, without suffering an appreciable loss in overall volumetric productivity. Biotechnol. Bioeng. 2007;97: 536,543. © 2006 Wiley Periodicals, Inc. [source]


ChemInform Abstract: Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Using Ce(SO4)2,SiO2 as a Heterogeneous and Recyclable Catalyst.

CHEMINFORM, Issue 40 2010
Wen Pei
Abstract Compared with the classical Biginelli reaction, the presented new method has the advantages of better product yields, short reaction time, easy separation and tolerance towards various functional groups. [source]


An Extremely Simple Dibenzopentalene Synthesis from 2-Bromo-1-ethynylbenzenes Using Nickel(0) Complexes: Construction of Its Derivatives with Various Functionalities

CHEMISTRY - A EUROPEAN JOURNAL, Issue 11 2009
Takeshi Kawase Prof.
Abstract Nice and easy: A very simple synthesis for dibenzopentalenes, which starts from 1-bromo-2-ethynylbenzenes, has been developed. It uses Ni0 complexes (see scheme), from which a relatively stable NiII complex as an important intermediate has been isolated. Dibenzopentalenes with various functional groups can be prepared by the procedure, and their electronic properties are consistent with theoretical calculations. An extremely simple dibenzopentalene synthesis from readily available 2-bromo-1-ethynylbenzenes using a nickel(0) complex is described. Although the yields are moderate, the formation of three CC bonds in a single process and the high availability of the starting materials are important advantages of this reaction. The corresponding aryl,nickel(II) complex as an important intermediate was isolated as relatively stable crystals, and the structure was confirmed by X-ray crystallographic analysis. The high stability of this complex should play a key role in this reaction. The reaction is applicable to the preparation of dibenzopentalenes bearing various functional groups. Their electronic properties are consistent with theoretical calculations. The cyclic voltammograms of these compounds reveal highly amphoteric redox properties. In particular, the electron-donating property of a tetramethoxy derivative is greater than that of oligothiophenes and dibenzodithiophenes and almost comparable to that of pentacene. [source]


Improved Palladium-Catalyzed Sonogashira Coupling Reactions of Aryl Chlorides

CHEMISTRY - A EUROPEAN JOURNAL, Issue 6 2009
Christian Torborg
Well matched: Novel palladium/heteroaryl-phosphines are introduced for Sonogashira reactions of aryl and heteroaryl chlorides including challenging substrates (see scheme). The desired coupling reactions proceed smoothly and tolerate various functional groups. [source]


Biologically Active Compounds through Catalysis: Efficient Synthesis of N -(Heteroarylcarbonyl)- N,-(arylalkyl)piperazines

CHEMISTRY - A EUROPEAN JOURNAL, Issue 3 2004
Kamal Kumar Dr.
Abstract A practical route for the synthesis of new biologically active 5-HT2,A receptor antagonists has been developed. In only three catalytic steps, this class of central nervous system (CNS) active compounds can be synthesized efficiently with high diversity. As the initial step, an anti -Markovnikov addition of amines to styrenes provides an easy route to N -(arylalkyl)piperazines, which constitute the core structure of the active molecules. Here, base-catalyzed hydroamination reactions of styrenes with benzylated piperazine proceeded in high yield even at room temperature. After catalytic debenzylation, the free amines were successfully carbonylated with different aromatic and heteroaromatic halides and carbon monoxide to yield the desired compounds in good to excellent yields. The two key reactions, base-catalyzed hydroamination of styrenes and palladium-catalyzed aminocarbonylation of haloarenes/heterocycles, showed tolerance towards various functional groups, thereby demonstrating the potential to synthesize a wide variety of new derivatives of this promising class of pharmaceuticals. [source]


Coming of Age: Sustainable Iron-Catalyzed Cross-Coupling Reactions

CHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 5 2009
Waldemar Maximilian Czaplik
Abstract Iron-catalyzed cross-coupling reactions have, over the past years, developed to maturity and today are an integral part of the organic chemist's toolkit. They benefit from low costs, operational simplicity, and high reactivity and thus constitute the "green" sister of the palladium and nickel establishment. This timely Review traces back major achievements, discusses their mechanistic background, and highlights numerous applications to molecular synthesis. Iron-catalyzed carbon,carbon bond-forming reactions have matured to an indispensable class of reactions in organic synthesis. The advent of economically and ecologically attractive iron catalysts in the past years has stepped up the competition with the established palladium and nickel catalyst systems that have dominated the field for more than 30 years, but suffer from high costs, toxicity, and sometimes low reactivity. Iron-catalyzed protocols do not merely benefit from economic advantages but entertain a rich manifold of reactivity patterns and tolerate various functional groups. The past years have witnessed a rapid development with ever-more-efficient protocols for the cross-coupling between alkyl, alkenyl, alkynyl, aryl, and acyl moieties becoming available to organic chemists. This Review intends to shed light onto the versatility that iron-catalyzed cross-coupling reactions offer, summarize major achievements, and clear the way for further use of such superior methodologies in the synthesis of fine chemicals, bioactive molecules, and materials. [source]