Various Complexes (various + complex)

Distribution by Scientific Domains


Selected Abstracts


New perspectives in retinal imaging: fundus autofluorescence and age-related macular degeneration

ACTA OPHTHALMOLOGICA, Issue 2007
F HOLZ
Fundus Autofluorescence (FAF) imaging using confocal scanning laser ophthalmoscopy is a non-invasive method to to accurately record the topographic distribution of RPE lipofuscin in the human eye in vivo. Excessive lipofuscin accumkulation in the RPE is a common downstream pathogenetic pathway in various complex and monogenetic retinal diseases. Toxic compounds and molecular mechanisms of interference with normal cellular functions have been identified including the dominant fluorophore A2-E. Alterations in fundus autofluorescence (FAF) appearance in eyes with early and late age-related macular degeneration (AMD) can be striking. FAF patterns and distribution do not necessarily correlate with the features of interest in color or angiographic images of eyes with early or late AMD. In the prospective, multicenter FAM study distinct patterns of abnormal FAF were identified and classified in the junctional zone of geographic atrophy (GA). Areas of increased FAF outside GA were associated with variable degrees of loss of retinal sensitivity when tested with microperimetry which suggests a functional correlate of lipofuscin accumulation. Increased FAF preceded the development and enlargement of outer retinal atrophy associated with spread of absolute scotoma in eyes with AMD. Longitudinal examinations showed that the abnormal phenotypic FAF patterns serve as novel prognostic determinants which allows to distinguish fast vs. slow progressors. These findings are relevant and now used to design and carry out interventional trials with agents aimed at slowing down spread of atrophy, e.g. using visual cycle modulators to influence lipofuscinogenesis. Hereby FAF imaging also serves as a mean to accurately delineate and measure areas of GA over time in an automated fashion. A phenotype-genotype correlation was identified for a distinct FAF phenotype subset which was found to represent late-onset Stargardt macular dystrophy mimicking late-stage atrophic AMD. New imaging technologies were recently applied including simultaneous recordings of FAF images and high-resolution, spectral-domain optical coherence tomography (OCT) which allows to identify morphological correlates of abnormal FAF signals in optical biopsies. [source]


Dietary specialization and infochemical use in carnivorous arthropods: testing a concept

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2003
Johannes L. M. Steidle
Abstract For the location of hosts and prey, insect carnivores (i.e., parasitoids or predators) often use infochemical cues that may originate from the host/prey itself but also from the food of the host/prey, a food plant, or another feeding substrate. These cues can be either specific for certain host/prey complexes or generally present in various complexes, and the reaction of the carnivores to these cues is either innate or learned. According to the concept on dietary specialization and infochemical use in natural enemies, the origin and specificity of the infochemical cues used and the innateness of the behavioural response are dependent on the degree of dietary specialization of the carnivore and its host/prey species. This concept has been widely adopted and has been frequently cited since its publication. Only few studies, however, have been explicitly designed to test predictions of the concept. Thus, more than 10 years after publication and despite of its broad acceptance, the general validity of the concept is still unclear. Using data from about 140 research papers on 95 species of parasitoids and predators, the present literature study comparatively scrutinises predictions from the concept. In accordance with the concept, learning to react to infochemicals and the use of general host and host plant cues was more often found in generalists than in specialists. In addition, more specialists were using specific infochemicals than generalists. In contrast to the concept, however, there was no significant difference between specialists and generalists in the proportion of carnivore species that use infochemicals during foraging and also extreme generalists are using infochemical cues for foraging. Likewise, an innate reaction to infochemicals was found in both specialists and generalists. Several reasons why infochemical use, including an innate reaction to infochemicals, is adaptive in generalist carnivores are discussed . We conclude that the concept has been a useful paradigm in advancing the chemical ecology of arthropod carnivores, but needs to be modified: the use of infochemicals is expected in all arthropod carnivores, regardless of dietary specialization. [source]


Pyrazolate-Based Dinucleating Ligands in L2M2 Scaffolds: Effects of Bulky Substituents and Coligands on Structures and M···H,C Interactions

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2004
Jens C. Röder
Abstract A series of nickel(II) and palladium(II) complexes [L2M2]2+ have been prepared and structurally characterized, where L is a pyrazolate ligand with bulky 2,6-dimethyl- or 2,6-di(isopropyl)anilinomethyl side arms. Coordinating counter anions such as chloride can bind to axial sites of the dinickel species in a solvent-dependent process, giving rise to five-coordinate high-spin metal ions. In the case of weakly coordinating anions, the metal ions are found in roughly square-planar environments, and the structures are governed by the tendency of the bulky aryl groups to avoid each other, which forces the methyl or isopropyl substituents in the aryl 2- and 6-positions to approach the metal ions from the axial directions. This leads to drastic low-field shifts of the respective 1H NMR signals, e.g. , = 7.86 ppm for the isopropyl ,CH which comes in close proximity to the low-spin nickel(II) center. The relevance of such low-field NMR resonances of protons close to the axial sites of d8 metal ions for possible three-center four-electron M···H,C hydrogen bonds involving the filled d orbital of the metal ion is discussed. In the present case, attractive M···H interactions are assumed to be of no major significance. This was corroborated by the structure of a further [L2Ni2]2+ type complex where the anilinomethyl side arms bear only a single 2-isopropyl group, which was found rotated away from the metal. Additional spectroscopic and electrochemical properties of the various complexes are reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


A linear three-center four electron bonding identity nucleophilic substitution at carbon, boron, and phosphorus.

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 7 2010
A theoretical study in combination with van't Hoff modeling
Abstract We studied various identity nucleophilic substitution reactions based on an SN2 reaction profile. With calculations and experimental geometries concerning the nature of the various complexes indicated as stable, intermediate, and transition state we were able to show the additional value of van't Hoff 's tetrahedron by changing its geometry via a trigonal pyramid into a trigonal bipyramid. The ratio of the apical and the corresponding tetrahedral bond distance is then 1.333. This value has been used in general as a calibration point for the understanding of the (in)stabilities of the complex formation on the SN2 reaction coordinate. The relevance of this approach has been also proved for enzymatic reactions focused on carbon and phosphorus substrates. Furthermore, it could be established that identity proton-in-line displacements are fully comparable with the relocation of carbon in a nucleophilic substitution reaction as Cl, + CH3Cl. The significance of this information will afford new insight in the dynamics of a linear three-center four-electron complex. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 [source]


Density functional study of HO(H2O)n (n = 1,3) clusters

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4 2005
Xiu-Li Dong
Abstract The hydrogen bonding complexes HO(H2O)n (n = 1,3) were completely investigated in the present study using DFT and MP2 methods at varied basis set levels from 6-31++G(d,p) to 6-311++G(2d,2p). For n = 1 two, for n = 2 two, and for n = 3 five reasonable geometries are considered. The optimized geometric parameters and interaction energies for various complexes at different levels are estimated. The infrared spectrum frequencies and IR intensities of the most stable structures are reported. Finally, thermochemistry studies are also carried out. The results indicate that the formation and the number of hydrogen bonding have played an important role in the structures and relative stabilities of different complexes. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


Complexation of the Vulcanization Accelerator Tetramethylthiuram Disulfide and Related Molecules with Zinc Compounds Including Zinc Oxide Clusters (Zn4O4)

CHEMISTRY - A EUROPEAN JOURNAL, Issue 3 2008
Ralf Steudel Prof.
Abstract Zinc chemicals are used as activators in the vulcanization of organic polymers with sulfur to produce elastic rubbers. In this work, the reactions of Zn2+, ZnMe2, Zn(OMe)2, Zn(OOCMe)2, and the heterocubane cluster Zn4O4 with the vulcanization accelerator tetramethylthiuram disulfide (TMTD) and with the related radicals and anions Me2NCS2., Me2NCS3., Me2NCS2,, and Me2NCS3, have been studied by quantum chemical methods at the MP2/6-31+G(2df,p)//B3LYP/6-31+G* level of theory. More than 35 zinc complexes have been structurally characterized and the energies of formation from their components calculated for the first time. The binding energy of TMTD as a bidendate ligand increases in the order ZnMe2various complexes from S8 or TMTD with formation of species derived from the radical Me2NCS3. or the trithiocarbamate anion Me2NCS3, is endothermic for mono- and dinuclear zinc dithiocarbamate (dtc) complexes such as [Zn(dtc)2] and [Zn2(dtc)4], but exothermic in the case of polynuclear zinc oxide species containing bridging ligands as in [Zn4O4(,-S2CNMe2)] and [Zn4O4(,-dtc)]. Therefore, zinc oxide as a polynuclear species is predicted to promote the formation of trisulfido complexes, which are generally assumed to serve as catalysts for the transfer of sulfur atoms during rubber vulcanization. This prediction is in accord with the empirical knowledge that ZnO is a better activator in TMTD-accelerated rubber vulcanization than zinc dithiocarbamate. [source]


Can [M(H)2(H2)(PXP)] Pincer Complexes (M=Fe, Ru, Os; X=N, O, S) Serve as Catalyst Lead Structures for NH3 Synthesis from N2 and H2?

CHEMISTRY - A EUROPEAN JOURNAL, Issue 23 2007
Markus Hölscher Dr.
Abstract The potential of pincer complexes [M(H)2(H2)(PXP)] (M=Fe, Ru, Os; X=N, O, S) to coordinate, activate, and thus catalyze the reaction of N2 with classical or nonclassical hydrogen centers present at the metal center, with the aim of forming NH3 with H2 as the only other reagent, was explored by means of DF (density functional) calculations. Screening of various complexes for their ability to perform initial hydrogen transfer to coordinated N2 showed ruthenium pincer complexes to be more promising than the corresponding iron and osmium analogues. The ligand backbone influences the reaction dramatically: the presence of pyridine and thioether groups as backbones in the ligand result in inactive catalysts, whereas ether groups such as ,-pyran and furan enable the reaction and result in unprecedented low activation barriers (23.7 and 22.1,kcal,mol,1, respectively), low enough to be interesting for practical application. Catalytic cycles were calculated for [Ru(H)2(H2)(POP)] catalysts (POP=2,5-bis(dimethylphosphanylmethyl)furan and 2,6-bis(dimethylphosphanylmethyl)-,-pyran). The height of activation barriers for the furan system is somewhat more advantageous. Formation of inactive metal nitrides has not been observed. SCRF calculations were used to introduce solvent (toluene) effects. The Gibbs free energies of activation of the numerous single reaction steps do not change significantly when solvent is included. The reaction steps associated with the formation of the active catalyst from precursors [M(H)2(H2)(PXP)] were also calculated. The otherwise inactive pyridine ligand system allows for the generation of the active catalyst species, whereas the ether ligand systems show activation barriers that could prohibit practical application. Consequently the generation of the active catalyst species needs to be addressed in further studies. [source]