Home About us Contact | |||
Various Brain Regions (various + brain_regions)
Selected AbstractsWAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave dischargesEPILEPSIA, Issue 8 2010Clementina M. Van Rijn Summary Purpose:, Genetically epileptic WAG/Rij rats develop spontaneous absence-like seizures after 3 months of age. We used WAG/Rij rats to examine whether absence seizures are associated with changes in the expression of type-1 cannabinoid (CB1) receptors. Methods:, Receptor expression was examined by in situ hybridization and western blot analysis in various brain regions of "presymptomatic" 2-month old and "symptomatic" 8-month-old WAG/Rij rats relative to age-matched nonepileptic control rats. Furthermore, we examined whether pharmacologic activation of CB1 receptor affects absence seizures. We recorded spontaneous spike-wave discharges (SWDs) in 8-month old WAG/Rij rats systemically injected with the potent CB1 receptor agonist, R(+)WIN55,212-2 (3,12 mg/kg, s.c.), given alone or combined with the CB1 receptor antagonist/inverse agonist, AM251 (12 mg/kg, s.c.). Results:, Data showed a reduction of CB1 receptor mRNA and protein levels in the reticular thalamic nucleus, and a reduction in CB1 receptor protein levels in ventral basal thalamic nuclei of 8-month-old WAG/Rij rats, as compared with age-matched ACI control rats. In vivo, R(+)WIN55,212-2 caused a dose-dependent reduction in the frequency of SWDs in the first 3 h after the injection. This was followed by a late increase in the mean SWD duration, which suggests a biphasic modulation of SWDs by CB1 receptor agonists. Both effects were reversed or attenuated when R(+)WIN55,212-2 was combined with AM251. Discussion:, These data indicate that the development of absence seizures is associated with plastic modifications of CB1 receptors within the thalamic-cortical-thalamic network, and raise the interesting possibility that CB1 receptors are targeted by novel antiabsence drugs. [source] Characterization of a transneuronal cytokine family Cbln , regulation of secretion by heteromeric assemblyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2007Takatoshi Iijima Abstract Cbln1, a member of the C1q and tumor necrosis factor superfamily, plays crucial roles as a cerebellar granule cell-derived transneuronal regulator of synapse integrity and plasticity in Purkinje cells. Although other Cbln family members, Cbln2,Cbln4, have distinct spatial and temporal patterns of expression throughout the CNS, their biochemical and biological properties have remained largely uncharacterized. Here, we demonstrated that in mammalian heterologous cells, Cbln2 and Cbln4 were secreted as N-linked glycoproteins, like Cbln1. In contrast, despite the presence of a functional signal sequence, Cbln3 was not secreted when expressed alone but was retained in the endoplasmic reticulum (ER) or cis -Golgi because of its N-terminal domain. All members of the Cbln family formed not only homomeric but also heteromeric complexes with each other in vitro. Accordingly, when Cbln1 and Cbln3 were co-expressed in heterologous cells, a proportion of the Cbln1 proteins was retained in the ER or cis -Golgi; conversely, some Cbln3 proteins were secreted together with Cbln1. Similarly, in wild-type granule cells expressing Cbln1 and Cbln3, Cbln3 proteins were partially secreted and reached postsynaptic sites on Purkinje cell dendrites, while Cbln3 was almost completely degraded in cbln1 -null granule cells. These results indicate that like Cbln1, Cbln2 and Cbln4 may also serve as transneuronal regulators of synaptic functions in various brain regions. Furthermore, heteromer formation between Cbln1 and Cbln3 in cerebellar granule cells may modulate each other's trafficking and signaling pathways; similarly, heteromerization of other Cbln family proteins may also have biological significance in other neurons. [source] Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2005Wei-Lin Chien Abstract Memory is one of the most fundamental mental processes, and various approaches have been used to understand the mechanisms underlying this process. Nitric oxide (NO), cGMP and protein kinase G (PKG) are involved in the modulation of synaptic plasticity in various brain regions. YC-1, which is a benzylindazole derivative, greatly potentiated the response of soluble guanylate cyclase to NO (up to several hundreds fold). We have previously shown that YC-1 markedly enhances long-term potentiation in hippocampal and amygdala slices via NO-cGMP-PKG-dependent pathway. We here further investigated whether YC-1 promotes learning behaviour in Morris water maze and avoidance tests. It was found that YC-1 shortened the escape latency in the task of water maze, increased and decreased the retention scores in passive and active avoidance task, respectively. Administration of YC-1 30 min after foot-shock stimulation did not significantly affect retention scores in response to passive avoidance test. Administration of scopolamine, a muscarinic antagonist, markedly impaired the memory acquisition. Pretreatment of YC-1 inhibited the scopolamine-induced learning deficit. The enhancement of learning behaviour by YC-1 was antagonized by intracerebroventricular injection of NOS inhibitor L-NAME and PKG inhibitors of KT5823 and Rp-8-Br-PET-cGMPS, indicating that NO-cGMP-PKG pathway is also involved in the learning enhancement action of YC-1. YC-1 is thus a good drug candidate for the improvement of learning and memory. [source] Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imagingHEPATOLOGY, Issue 5 2003Nadim Joni Shah M.D. Changes are shown in the spin-lattice (T1) relaxation time caused by the putative deposition of manganese in various brain regions of hepatic encephalopathy (HE) patients using a novel and fast magnetic resonance imaging (MRI) method for quantitative relaxation time mapping. A new method, T1 mapping with partial inversion recovery (TAPIR), was used to obtain a series of T1 -weighted images to produce T1 maps. Imaging of 15 control subjects and 11 patients was performed on a 1.5T MRI scanner. The measurement time per patient with this technique, including adjustments, was ,5 minutes. Regions of interest in the globus pallidus, the caudate nucleus, the posterior and anterior limbs of the internal capsule, the putamen, the frontal and occipital white matter, the white matter of the corona radiata, the occipital visual and frontal cortices, and the thalamus were interactively defined in the left hemisphere and analyzed with respect to their T1 values. T1 changes in the brains of HE patients can be determined quantitatively with TAPIR in short, clinically relevant measurement times. Significant correlations between the change in T1 and HE severity have been shown in the globus pallidus, the caudate nucleus, and the posterior limb of the internal capsule. No significant correlation of T1 with grade of HE was found in the putamen, frontal white matter, white matter of the corona radiata, white matter in the occipital lobe, the anterior limb of the internal capsule, visual cortex, thalamus, or frontal cortex. In conclusion, these measurements show that T1 mapping is feasible in short, clinically relevant acquisition times. [source] Deletions of SCN1A 5, genomic region with promoter activity in Dravet syndrome,HUMAN MUTATION, Issue 7 2010Tojo Nakayama Abstract Mutations involving the voltage-gated sodium channel ,I gene SCN1A are major genetic causes of childhood epileptic disorders, as typified by Dravet syndrome. Here we investigated the upstream regions of the SCN1A 5, noncoding exons and found two major regions with promoter activity. These two major promoters were simultaneously active in various brain regions and in most neurons. Using multiplex ligation-dependent probe amplification (MLPA) assays with probes for the 5, noncoding exons, their upstream regions, and all coding exons of SCN1A, we investigated 130 epileptic patients who did not show any SCN1A mutations by sequence analysis of all coding exons and exon,intron boundaries. Among 71 Dravet syndrome patients, we found two patients with heterozygous microdeletions removing the 5, noncoding exons and regions with promoter activity but not affecting the coding exons. We also identified four patients with deletions/duplication in the coding region. One patient with symptomatic focal epilepsy also showed a deletion in the coding region. This study provides the first case of microdeletion limited to the SCN1A 5, promoter region with the coding sequence preserved, and indicates the critical involvement of this upstream region in the molecular pathology of Dravet syndrome. Hum Mutat 31:,11, 2010. © 2010 Wiley-Liss, Inc. [source] Coronary heart disease is associated with regional grey matter volume loss: implications for cognitive function and behaviourINTERNAL MEDICINE JOURNAL, Issue 7 2008O. P. Almeida Abstract Coronary heart disease (CHD) has been associated with impaired cognition, but the mechanisms underlying these changes remain unclear. We designed this study to determine whether adults with CHD show regional brain losses of grey matter volume relative to controls. We used statistical parametric mapping (SPM5) to determine regional changes in grey matter volume of T1 -weighted magnetic resonance images of 11 adults with prior history of myocardial infarction relative to seven healthy controls. All analyses were adjusted for total grey and white matter volume, age, sex and handedness. CHD participants showed a loss of grey matter volume in the left medial frontal lobe (including the cingulate), precentral and postcentral cortex, right temporal lobe and left middle temporal gyrus, and left precuneus and posterior cingulate. CHD is associated with loss of grey matter in various brain regions, including some that play a significant role in cognitive function and behaviour. The underlying causes of these regional brain changes remain to be determined. [source] Investigating the stimulus-dependent temporal dynamics of the BOLD signal using spectral methodsJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2003Karsten Müller PhD Abstract Purpose To compare several spectral parameters using different durations of visual hemifield stimulation in order to explore the different temporal behavior of the blood oxygenation-level dependent (BOLD) signal in various brain regions. Materials and Methods Spectral methods were applied to three different groups of subjects with visual stimulation lasting 6, 12, and 30 seconds. Furthermore, diffusion weighting was applied in an interleaved way. The core of the data processing was the computation of the spectral density matrix using the multidimensional weighted covariance estimate. Spectral parameters of coherence and phase shift were computed. Results The correlation between signal changes and phase shifts was dependent on the duration of the visual stimulation. The shorter the duration of visual stimulation, the stronger the correlation between percentage signal change and phase shift. Conclusion The experiments with short and long stimuli differed mainly in the distribution of the activated voxels in the plane of percentage signal change and phase shift. It was revealed that the height of the signal change depends on the phase shift, whereas the diffusion weighting has no influence. J. Magn. Reson. Imaging 2003;17:375,382. © 2003 Wiley-Liss, Inc. [source] Adenosine inhibits paraventricular pre-sympathetic neurons through ATP-dependent potassium channelsJOURNAL OF NEUROCHEMISTRY, Issue 2 2010De-Pei Li J. Neurochem. (2010) 113, 530,542. Abstract Adenosine produces cardiovascular depressor effects in various brain regions. However, the cellular mechanisms underlying these effects remain unclear. The pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) play an important role in regulating arterial blood pressure and sympathetic outflow through projections to the spinal cord and brainstem. In this study, we performed whole-cell patch-clamp recordings on retrogradely labeled PVN neurons projecting to the intermediolateral cell column of the spinal cord in rats. Adenosine (10,100 ,M) decreased the firing activity in a concentration-dependent manner, with a marked hyperpolarization in 12 of 26 neurons tested. Blockade of A1 receptors with the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine or intracellular dialysis of guanosine 5,- O -(2-thodiphosphate) eliminated the inhibitory effect of adenosine on labeled PVN neurons. Immunocytochemical labeling revealed that A1 receptors were expressed on spinally projecting PVN neurons. Also, blocking ATP-dependent K+ (KATP) channels with 100 ,M glibenclamide or 200 ,M tolbutamide, but not the G protein-coupled inwardly rectifying K+ channels blocker tertiapin-Q, abolished the inhibitory effect of adenosine on the firing activity of PVN neurons. Furthermore, glibenclamide or tolbutamide significantly decreased the adenosine-induced outward currents in labeled neurons. The reversal potential of adenosine-induced currents was close to the K+ equilibrium potential. In addition, adenosine decreased the frequency of both spontaneous and miniature glutamatergic excitatory post-synaptic currents and GABAergic inhibitory post-synaptic currents in labeled neurons, and these effects were also blocked by 8-cyclopentyl-1,3-dipropylxanthine. Collectively, our findings suggest that adenosine inhibits the excitability of PVN pre-sympathetic neurons through A1 receptor-mediated opening of KATP channels. [source] Growth Hormone-Releasing Peptide-6 Increases Insulin-Like Growth Factor-I mRNA Levels and Activates Akt in RCA-6 Cells as a Model of Neuropeptide Y NeuronesJOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2005L. M. Frago Abstract Chronic systemic administration of growth hormone (GH)-releasing peptide-6 (GHRP-6), an agonist for the ghrelin receptor, to normal adult rats increases insulin-like growth factor (IGF)-I mRNA and phosphorylated Akt (pAkt) levels in various brain regions, including the hypothalamus. Because neuropeptide Y (NPY) neurones of the arcuate nucleus express receptors for ghrelin, we investigated whether these neurones increase their IGF-I and p-Akt levels in response to this agonist. In control rats, immunoreactive pAkt was practically undetectable; however, GHRP-6 increased p-Akt immunoreactivity in the arcuate nucleus, with a subset of neurones also being immunoreactive for NPY. Immunoreactivity for IGF-I was detected in NPY neurones in both experimental groups. To determine if activation of this intracellular pathway is involved in modulation of NPY synthesis RCA-6 cells, an embryonic rat hypothalamic neuronal cell line that expresses NPY was used. We found that GHRP-6 stimulates NPY and IGF-I mRNA synthesis and activates Akt in this cell line. Furthermore, inhibition of Akt activation by LY294002 treatment did not inhibit GHRP-6 induction of NPY or IGF-I synthesis. These results suggest that some of the effects of GHRP-6 may involve stimulation of local IGF-I production and Akt activation in NPY neurones in the arcuate nucleus. However, GHRP-6 stimulation of NPY production does not involve this second messenger pathway. [source] Alcohol Consumption and the Body's Biological ClockALCOHOLISM, Issue 8 2005Rainer Spanagel This review summarizes new findings on the bidirectional interactions between alcohol and the clock genes, underlying the generation of circadian rhythmicity. At the behavioral level, both adult and perinatal ethanol treatments alter the free-running period and light response of the circadian clock in rodents; genetic ethanol preference in alcohol-preferring rat lines is also associated with alterations in circadian pacemaker function. At the neuronal level, it has been shown that ethanol consumption alters the circadian expression patterns of period (per) genes in various brain regions, including the suprachiasmatic nucleus. Notably, circadian functions of ,-endorphin,containing neurons that participate in the control of alcohol reinforcement become disturbed after chronic alcohol intake. In turn, per2 gene activity regulates alcohol intake through its effects on the glutamatergic system through glutamate reuptake mechanisms and thereby may affect a variety of physiological processes that are governed by our internal clock. In summary, a new pathologic chain has been identified that contributes to the negative health consequences of chronic alcohol intake. Thus, chronic alcohol intake alters the expression of per genes, and, as a consequence, a variety of neurochemical and neuroendocrine functions become disturbed. Further steps in this pathologic chain are alterations in physiological and immune functions that are under circadian control, and, as a final consequence, addictive behavior might be triggered or sustained by this cascade. [source] Ethanol-induced elevation of 3,-hydroxy-5,-pregnan-20-one does not modulate motor incoordination in ratsALCOHOLISM, Issue 8 2004Rahul T. Khisti Background: Ethanol administration elevates the levels of GABAergic neuroactive steroids in brain and contributes to some of its behavioral actions. In the present study, we investigated whether such elevation of GABAergic neuroactive steroids contributes to the motor incoordinating effects of ethanol. Methods: Sprague-Dawley rats were administered ethanol (2 g/kg intraperitoneally) or saline, and the level of 3,-hydroxy-5,-pregnan-20-one (3,,5,-THP) was measured across time in cerebral cortex and in various brain regions at the peak time by radioimmunoassay. To study whether increases in GABAergic neuroactive steroids are responsible for the motor incoordinating actions of ethanol, rats were subjected to chemical (5,-reductase inhibitor, finasteride) and surgical (adrenalectomy) manipulations before receiving ethanol (2 g/kg intraperitoneally) injections. The rats were then subjected to different paradigms to evaluate motor impairment including the Majchrowicz motor intoxication rating scale, Rotarod test, and aerial righting reflex task at different time points. Results: The radioimmunoassay of 3,,5,-THP in different brain regions showed that ethanol increases 3,,5,-THP levels by 3- and 9-fold in cerebral cortex and hippocampus, respectively. There was no change in 3,,5,-THP levels in cerebellum and midbrain. The time course of 3,,5,-THP elevations in the cerebral cortex showed significant increases 20-min after ethanol injection with a peak at 60 min. In contrast, motor toxicity peaked between 5 and 10 min after ethanol injections and gradually decreased over time. Furthermore, adrenalectomy or pretreatment with finasteride (2 × 50 mg/kg, subcutaneously) did not reduce motor incoordinating effects of ethanol as assessed by the Majchrowicz intoxication rating score, Rotarod test, or aerial righting reflex task. Conclusions: Ethanol increases GABAergic neuroactive steroids in a time- and brain region-selective manner. The role of neuroactive steroids in alcohol action is specific for certain behaviors. Alcohol-induced deficits in motor coordination are not mediated by elevated neuroactive steroid biosynthesis. [source] Cerebral Microinfarcts Associated with Severe Cerebral ,-Amyloid AngiopathyBRAIN PATHOLOGY, Issue 2 2010Virawudh Soontornniyomkij Abstract Cerebral amyloid angiopathy (CAA) is common in elderly individuals, especially those affected with Alzheimer's disease. Eighteen brains with severe SCAA (SCAA) were compared with 21 brains with mild CAA (MCAA) to investigate whether the presence of SCAA in the brains of demented patients was associated with a higher burden of old microinfarcts than those with MCAA. Immunohistochemistry for CD68 was employed to highlight old microinfarcts in tissue blocks from various brain regions. Old microinfarcts, manually counted by light microscopy, were present in 14 of 18 SCAA brains and in 7 of 21 MCAA brains (P = 0.01, two-tailed Fisher's exact test). The average number of old microinfarcts across geographic regions in each brain ranged from 0 to 1.95 (mean rank 24.94, sum of ranks 449) in the SCAA group, and from 0 to 0.35 (mean rank 15.76, sum of ranks 331) in the MCAA group (P = 0.008, two-tailed Mann,Whitney U-test). Frequent old microinfarcts in demented individuals with severe CAA may contribute a vascular component to the cognitive impairment in these patients. [source] |