Vasorelaxant Effects (vasorelaxant + effects)

Distribution by Scientific Domains


Selected Abstracts


Virodhamine relaxes the human pulmonary artery through the endothelial cannabinoid receptor and indirectly through a COX product

BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2008
H Koz, owska
Background and purpose: The endocannabinoid virodhamine is a partial agonist at the cannabinoid CB1 receptor and a full agonist at the CB2 receptor, and relaxes rat mesenteric arteries through endothelial cannabinoid receptors. Its concentration in the periphery exceeds that of the endocannabinoid anandamide. Here, we examined the influence of virodhamine on the human pulmonary artery. Experimental approach: Isolated human pulmonary arteries were obtained during resections for lung carcinoma. Vasorelaxant effects of virodhamine were examined on endothelium-intact vessels precontracted with 5-HT or KCl. Key results: Virodhamine, unlike WIN 55,212-2, relaxed 5-HT-precontracted vessels concentration dependently. The effect of virodhamine was reduced by endothelium denudation, two antagonists of the endothelial cannabinoid receptor, cannabidiol and O-1918, and a high concentration of the CB1 receptor antagonist rimonabant (5 ,M), but only slightly attenuated by the NOS inhibitor L -NAME and not affected by a lower concentration of rimonabant (100 nM) or by the CB2 and vanilloid receptor antagonists SR 144528 and capsazepine, respectively. The COX inhibitor indomethacin and the fatty acid amide hydrolase inhibitor URB597 and combined administration of selective blockers of small (apamin) and intermediate and large (charybdotoxin) conductance Ca2+ -activated K+ channels attenuated virodhamine-induced relaxation. The vasorelaxant potency of virodhamine was lower in KCl- than in 5-HT-precontracted preparations. Conclusions and implications: Virodhamine relaxes the human pulmonary artery through the putative endothelial cannabinoid receptor and indirectly through a COX-derived vasorelaxant prostanoid formed from the virodhamine metabolite, arachidonic acid. One or both of these mechanisms may stimulate vasorelaxant Ca2+ -activated K+ channels. British Journal of Pharmacology (2008) 155, 1034,1042; doi:10.1038/bjp.2008.371; published online 22 September 2008 [source]


Scutellarin-induced endothelium-independent relaxation in rat aorta

PHYTOTHERAPY RESEARCH, Issue 11 2008
Zhenwei Pan
Abstract Scutellarin is a flavonoid extracted from the traditional Chinese herb, Erigeron breviscapus Hand Mazz. In the present study, the vasorelaxant effects of scutellarin and the underlying mechanism were investigated in isolated rat aorta. Scutellarin (3, 10, 30, 100 µm) caused a dose-dependent relaxation in both endothelium-intact and endothelium-denuded rat aortic rings precontracted with noradrenaline bitartrate (IC50 = 7.7 ± 0.6 µm), but not with potassium chloride. Tetraethylammonium, glibenclamide, atropine, propranolol, indomethacin and N(G)-nitro- l -arginine methyl ester had no influence on the vasorelaxant effect of scutellarin, which further excluded the involvement of potassium channels, muscarinic receptor, nitric oxide pathway and prostaglandin in this effect. Pretreatment with scutellarin decreased the tonic phase, but not the phasic phase of the noradrenaline bitartrate induced tension increment. Scutellarin also alleviated Ca2+ -induced vasoconstriction in Ca2+ -depleted/noradrenaline bitartrate pretreated rings in the presence of voltage-dependent calcium channel blocker verapamil. The noradrenaline bitartrate evoked intracellular calcium increase was inhibited by scutellarin. Scutellarin had no effect on phorbol-12,13-diacetate induced contraction in a calcium-free bath solution. These results showed that scutellarin could relax thoracic artery rings in an endothelium-independent manner. The mechanism seems to be the inhibition of extracellular calcium influx independent of the voltage-dependent calcium channel. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effect of Testosterone on Potassium Channel Opening in Human Corporal Smooth Muscle Cells

THE JOURNAL OF SEXUAL MEDICINE, Issue 4 2008
Deok Hyun Han MD
ABSTRACT Introduction., In humans, the role of testosterone in sexual functions, including sexual desire, nocturnal penile erections, and ejaculatory volume, has been relatively well established. However, the effects of testosterone on intrapenile structure in humans remains controversial. Aim., We assessed the direct effects of testosterone on potassium channels in human corporal smooth muscle cells, in an effort to understand the mechanisms inherent to the testosterone-induced relaxation of corporal smooth muscle cells at the cellular and molecular levels. Methods., We conducted electrophysiologic studies using cultured human corporal smooth muscle cells. We evaluated the effects of testosterone on potassium channels,BKCa and KATP channels,by determining the whole-cell currents and single-channel activities. For the electrophysiologic recordings, whole-cell and cell-attached configuration patch-clamp techniques were utilized. Main Outcome Measures., Changes in whole-cell currents and channel activities of BKCa and KATP channels by testosterone. Results., Testosterone (200 nM) significantly increased the single-channel activity of calcium-activated potassium (BKCa) channels and whole-cell K+ currents by 443.4 ± 83.4% (at +60 mV; N = 11, P < 0.05), and this effect was abolished by tetraethylammonium (TEA) (1 mM), a BKCa channel blocker. The whole-cell inward K+ currents of the KATP channels were also increased by 226.5 ± 49.3% (at ,100 mV; N = 7, P < 0.05). In the presence of a combination of vardenafil (10 nM) and testosterone (200 nM), the BKCa channel was activated to a significantly higher degree than was induced by testosterone alone. Conclusions., The results of patch-clamp studies provided direct molecular evidence that testosterone stimulates the activity of BKCa channels and KATP channels. An understanding of the signaling mechanisms that couple testosterone receptor activation to potassium channel stimulation will provide us with an insight into the cellular processes underlying the vasorelaxant effects of testosterone. Han DH, Chae MR, Jung JH, So I, Park JK, and Lee SW. Effect of testosterone on potassium channel opening in human corporal smooth muscle cells. J Sex Med 2008;5:822,832. [source]


Effects of potassium channel opener KRN4884 on human conduit arteries used as coronary bypass grafts

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 2 2000
Zhen Ren
Aims The effects of a new potassium channel opener KRN4884 on human arteries have not been studied. This study was designed to investigate the effects of KRN4884 on the human internal mammary artery (IMA) in order to provide information on possible clinical applications of KRN4884 for preventing and relieving vasospasm of arterial grafts in coronary artery bypass grafting. Methods IMA segments (n = 140) taken from patients undergoing coronary surgery were studied in the organ chamber. Concentration-relaxation curves for KRN4884 were established in the IMA precontracted with noradrenaline (NA), 5-hydroxytryptamine (5-HT), angiotensin II (ANG II), and endothelin-1 (ET-1). The effect of glibenclamide (GBC) on the KRN4884-induced relaxation was also examined in NA or 5-HT-precontracted IMA. Concentration-contraction curves for the four vasoconstrictors were constructed without/with pretreatment of KNR4884 (1 or 30 µm) for 15 min. Results KRN4884 induced less relaxation (P < 0.05) in the precontraction induced by ET-1 (72.9 ± 5.5%) than by ANG II (94.2 ± 3.2%) or NA (93.7 ± 4.1%) with lower EC50 (P < 0.05) for ANG II (,8.54 ± 0.54 log m) than that for NA (,6.14 ± 0.15 log M) or ET-1 (,6.69 ± 0.34 log m). The relaxation in the IMA pretreated with GBC was less than that in control (P < 0.05). KRN4884-pretreatment significantly reduced the contraction (P < 0.05) induced by NA (151.3 ± 18.4% vs 82.7 ± 8.7%), 5-HT (82.7 ± 12.2% vs 30.1 ± 7.3%), and ANG II (24.3 ± 6.3% vs 5.4 ± 1.6%), but did not significantly reduce the contraction induced by ET-1 (P > 0.05). Conclusion KRN4884 has marked vasorelaxant effects on the human IMA contracted by a variety of vasoconstrictors and the effect is vasoconstrictor-selective. [source]


What is the significance of vascular hydrogen sulphide (H2S)?

BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2006
S E O'Sullivan
The important role of nitric oxide (NO) in the regulation of vascular tone has been well studied. By contrast, the vascular significance of another gaseous mediator, hydrogen sulphide (H2S), is still poorly understood. A study published in this issue of the British Journal of Pharmacology now provides evidence that in addition to the vasorelaxant effects of H2S reported in vitro, low concentrations of H2S also cause arterial vasoconstriction, reverse NO-mediated vasorelaxation and cause an NO-dependent pressor effect in vivo. This commentary discusses the implications and questions raised by these results. British Journal of Pharmacology (2006) 149, 609,610. doi:10.1038/sj.bjp.0706907 [source]


A nitric oxide (NO)-releasing derivative of gabapentin, NCX 8001, alleviates neuropathic pain-like behavior after spinal cord and peripheral nerve injury

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2004
Wei-Ping Wu
Nitric oxide (NO) participates, at least in part, to the establishment and maintenance of pain after nerve injury. Therefore, drugs that target the NO/cGMP signaling pathway are of interest for the treatment of human neuropathic pain. Various compounds endowed with NO-releasing properties modulate the expression and function of inducible nitric oxide synthase (iNOS), the key enzyme responsible for sustained NO production under pathological conditions including neuropathic pain. With this background, we synthesized a new chemical entity, [1-(aminomethyl)cyclohexane acetic acid 3-(nitroxymethyl)phenyl ester] NCX8001, which has a NO-releasing moiety bound to gabapentin, a drug currently used for the clinical management of neuropathic pain. We examined the pharmacological profile of this drug with respect to its NO-releasing properties in vitro as well as to its efficacy in treating neuropathic pain conditions (allodynia) consequent to experimental sciatic nerve or spinal cord injuries. NCX8001 (1,30 ,M) released physiologically relevant concentrations of NO as it induced a concentration-dependent activation of soluble guanylyl cyclase (EC50=5.6 ,M) and produced consistent vasorelaxant effects in noradrenaline-precontracted rabbit aortic rings (IC50=1.4 ,M). NCX8001, but not gabapentin, counteracted in a concentration-dependent fashion lipopolysaccharide-induced overexpression and function of iNOS in RAW264.7 macrophages cell line. Furthermore, NCX8001 also inhibited the release of tumor necrosis factor alpha (TNF,) from stimulated RAW264.7 cells. NCX8001 (28,280 ,mol kg,1, i.p.) reduced the allodynic responses of spinal cord injured rats in a dose-dependent fashion while lacking sedative or motor effects. In contrast, gabapentin (170,580 ,mol kg,1, i.p.) resulted less effective and elicited marked side effects. NCX8001 alleviated the allodynia-like responses of rats to innocuous mechanical or cold stimulation following lesion of the sciatic nerve. This effect was not shared by equimolar doses of gabapentin. Potentially due to the slow releasing kinetics of NO, NCX8001 alleviated pain-like behaviors in two rat models of neuropathic pain in a fashion that is superior to its parent counterpart gabapentin. This new gabapentin derivative, whose mechanism deserves to be explored further, offers new hopes to the treatment of human neuropathic pain. British Journal of Pharmacology (2004) 141, 65,74. doi:10.1038/sj.bjp.0705596 [source]